Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
fe2ee143
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fe2ee143
编写于
5月 15, 2020
作者:
F
fary86
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Adjust onnx exporting related testcases
上级
4bb46606
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
211 addition
and
164 deletion
+211
-164
tests/ut/python/onnx/__init__.py
tests/ut/python/onnx/__init__.py
+0
-0
tests/ut/python/onnx/test_onnx.py
tests/ut/python/onnx/test_onnx.py
+210
-0
tests/ut/python/utils/test_serialize.py
tests/ut/python/utils/test_serialize.py
+1
-164
未找到文件。
tests/ut/python/onnx/__init__.py
0 → 100644
浏览文件 @
fe2ee143
tests/ut/python/onnx/test_onnx.py
0 → 100644
浏览文件 @
fe2ee143
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ut for model serialize(save/load)"""
import
os
import
stat
import
time
import
numpy
as
np
import
pytest
import
mindspore.common.dtype
as
mstype
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore.common.parameter
import
Parameter
from
mindspore.common.tensor
import
Tensor
from
mindspore.ops
import
operations
as
P
from
mindspore.train.serialization
import
export
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
def
is_enable_onnxruntime
():
val
=
os
.
getenv
(
"ENABLE_ONNXRUNTIME"
,
"False"
)
if
val
in
(
'ON'
,
'on'
,
'TRUE'
,
'True'
,
'true'
):
return
True
return
False
run_on_onnxruntime
=
pytest
.
mark
.
skipif
(
not
is_enable_onnxruntime
(),
reason
=
"Only support running on onnxruntime"
)
def
setup_module
():
pass
def
teardown_module
():
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
for
filename
in
os
.
listdir
(
cur_dir
):
if
filename
.
find
(
'ms_output_'
)
==
0
and
filename
.
find
(
'.pb'
)
>
0
:
# delete temp files generated by run ut
os
.
chmod
(
filename
,
stat
.
S_IWRITE
)
os
.
remove
(
filename
)
class
BatchNormTester
(
nn
.
Cell
):
"used to test exporting network in training mode in onnx format"
def
__init__
(
self
,
num_features
):
super
(
BatchNormTester
,
self
).
__init__
()
self
.
bn
=
nn
.
BatchNorm2d
(
num_features
)
def
construct
(
self
,
x
):
return
self
.
bn
(
x
)
def
test_batchnorm_train_onnx_export
():
"test onnx export interface does not modify trainable flag of a network"
input
=
Tensor
(
np
.
ones
([
1
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
net
=
BatchNormTester
(
3
)
net
.
set_train
()
if
not
net
.
training
:
raise
ValueError
(
'netowrk is not in training mode'
)
onnx_file
=
'batch_norm.onnx'
export
(
net
,
input
,
file_name
=
onnx_file
,
file_format
=
'ONNX'
)
if
not
net
.
training
:
raise
ValueError
(
'netowrk is not in training mode'
)
# check existence of exported onnx file and delete it
assert
os
.
path
.
exists
(
onnx_file
)
os
.
chmod
(
onnx_file
,
stat
.
S_IWRITE
)
os
.
remove
(
onnx_file
)
class
LeNet5
(
nn
.
Cell
):
"""LeNet5 definition"""
def
__init__
(
self
):
super
(
LeNet5
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
5
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
pad_mode
=
'valid'
)
self
.
fc1
=
nn
.
Dense
(
16
*
5
*
5
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
P
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv2
(
x
)))
x
=
self
.
flatten
(
x
)
x
=
self
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
class
DefinedNet
(
nn
.
Cell
):
"""simple Net definition with maxpoolwithargmax."""
def
__init__
(
self
,
num_classes
=
10
):
super
(
DefinedNet
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
0
,
weight_init
=
"zeros"
)
self
.
bn1
=
nn
.
BatchNorm2d
(
64
)
self
.
relu
=
nn
.
ReLU
()
self
.
maxpool
=
P
.
MaxPoolWithArgmax
(
padding
=
"same"
,
ksize
=
2
,
strides
=
2
)
self
.
flatten
=
nn
.
Flatten
()
self
.
fc
=
nn
.
Dense
(
int
(
56
*
56
*
64
),
num_classes
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
relu
(
x
)
x
,
argmax
=
self
.
maxpool
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc
(
x
)
return
x
class
DepthwiseConv2dAndReLU6
(
nn
.
Cell
):
"Net for testing DepthwiseConv2d and ReLU6"
def
__init__
(
self
,
input_channel
,
kernel_size
):
super
(
DepthwiseConv2dAndReLU6
,
self
).
__init__
()
weight_shape
=
[
1
,
input_channel
,
kernel_size
,
kernel_size
]
from
mindspore.common.initializer
import
initializer
self
.
weight
=
Parameter
(
initializer
(
'ones'
,
weight_shape
),
name
=
'weight'
)
self
.
depthwise_conv
=
P
.
DepthwiseConv2dNative
(
channel_multiplier
=
1
,
kernel_size
=
(
kernel_size
,
kernel_size
))
self
.
relu6
=
nn
.
ReLU6
()
def
construct
(
self
,
x
):
x
=
self
.
depthwise_conv
(
x
,
self
.
weight
)
x
=
self
.
relu6
(
x
)
return
x
# generate mindspore Tensor by shape and numpy datatype
def
gen_tensor
(
shape
,
dtype
=
np
.
float32
):
return
Tensor
(
np
.
ones
(
shape
).
astype
(
dtype
))
# ut configs in triple: (ut_name, network, network-input)
net_cfgs
=
[
(
'lenet'
,
LeNet5
(),
gen_tensor
([
1
,
1
,
32
,
32
])),
(
'maxpoolwithargmax'
,
DefinedNet
(),
gen_tensor
([
1
,
3
,
224
,
224
])),
(
'depthwiseconv_relu6'
,
DepthwiseConv2dAndReLU6
(
3
,
kernel_size
=
3
),
gen_tensor
([
1
,
3
,
32
,
32
])),
]
def
get_id
(
cfg
):
return
list
(
map
(
lambda
x
:
x
[
0
],
net_cfgs
))
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut
@
pytest
.
mark
.
parametrize
(
'name, net, inp'
,
net_cfgs
,
ids
=
get_id
(
net_cfgs
))
def
test_onnx_export
(
name
,
net
,
inp
):
onnx_file
=
name
+
".onnx"
export
(
net
,
inp
,
file_name
=
onnx_file
,
file_format
=
'ONNX'
)
# check existence of exported onnx file and delete it
assert
os
.
path
.
exists
(
onnx_file
)
os
.
chmod
(
onnx_file
,
stat
.
S_IWRITE
)
os
.
remove
(
onnx_file
)
@
run_on_onnxruntime
@
pytest
.
mark
.
parametrize
(
'name, net, inp'
,
net_cfgs
,
ids
=
get_id
(
net_cfgs
))
def
test_onnx_export_load_run
(
name
,
net
,
inp
):
onnx_file
=
name
+
".onnx"
export
(
net
,
inp
,
file_name
=
onnx_file
,
file_format
=
'ONNX'
)
import
onnx
import
onnxruntime
as
ort
print
(
'--------------------- onnx load ---------------------'
)
# Load the ONNX model
model
=
onnx
.
load
(
onnx_file
)
# Check that the IR is well formed
onnx
.
checker
.
check_model
(
model
)
# Print a human readable representation of the graph
g
=
onnx
.
helper
.
printable_graph
(
model
.
graph
)
print
(
g
)
print
(
'------------------ onnxruntime run ------------------'
)
ort_session
=
ort
.
InferenceSession
(
onnx_file
)
input_map
=
{
'x'
:
inp
.
asnumpy
()}
# provide only input x to run model
outputs
=
ort_session
.
run
(
None
,
input_map
)
print
(
outputs
[
0
])
# overwrite default weight to run model
for
item
in
net
.
trainable_params
():
default_value
=
item
.
default_input
.
asnumpy
()
input_map
[
item
.
name
]
=
np
.
ones
(
default_value
.
shape
,
dtype
=
default_value
.
dtype
)
outputs
=
ort_session
.
run
(
None
,
input_map
)
print
(
outputs
[
0
])
# check existence of exported onnx file and delete it
assert
os
.
path
.
exists
(
onnx_file
)
os
.
chmod
(
onnx_file
,
stat
.
S_IWRITE
)
os
.
remove
(
onnx_file
)
tests/ut/python/utils/test_serialize.py
浏览文件 @
fe2ee143
...
@@ -315,171 +315,8 @@ def test_export():
...
@@ -315,171 +315,8 @@ def test_export():
export
(
net
,
input_data
,
file_name
=
"./me_export.pb"
,
file_format
=
"GEIR"
)
export
(
net
,
input_data
,
file_name
=
"./me_export.pb"
,
file_format
=
"GEIR"
)
class
BatchNormTester
(
nn
.
Cell
):
"used to test exporting network in training mode in onnx format"
def
__init__
(
self
,
num_features
):
super
(
BatchNormTester
,
self
).
__init__
()
self
.
bn
=
nn
.
BatchNorm2d
(
num_features
)
def
construct
(
self
,
x
):
return
self
.
bn
(
x
)
class
DepthwiseConv2dAndReLU6
(
nn
.
Cell
):
"Net for testing DepthwiseConv2d and ReLU6"
def
__init__
(
self
,
input_channel
,
kernel_size
):
super
(
DepthwiseConv2dAndReLU6
,
self
).
__init__
()
weight_shape
=
[
1
,
input_channel
,
kernel_size
,
kernel_size
]
from
mindspore.common.initializer
import
initializer
self
.
weight
=
Parameter
(
initializer
(
'ones'
,
weight_shape
),
name
=
'weight'
)
self
.
depthwise_conv
=
P
.
DepthwiseConv2dNative
(
channel_multiplier
=
1
,
kernel_size
=
(
kernel_size
,
kernel_size
))
self
.
relu6
=
nn
.
ReLU6
()
def
construct
(
self
,
x
):
x
=
self
.
depthwise_conv
(
x
,
self
.
weight
)
x
=
self
.
relu6
(
x
)
return
x
def
test_batchnorm_train_onnx_export
():
input
=
Tensor
(
np
.
ones
([
1
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
net
=
BatchNormTester
(
3
)
net
.
set_train
()
if
not
net
.
training
:
raise
ValueError
(
'netowrk is not in training mode'
)
export
(
net
,
input
,
file_name
=
'batch_norm.onnx'
,
file_format
=
'ONNX'
)
if
not
net
.
training
:
raise
ValueError
(
'netowrk is not in training mode'
)
class
LeNet5
(
nn
.
Cell
):
"""LeNet5 definition"""
def
__init__
(
self
):
super
(
LeNet5
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
5
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
pad_mode
=
'valid'
)
self
.
fc1
=
nn
.
Dense
(
16
*
5
*
5
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
P
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv2
(
x
)))
x
=
self
.
flatten
(
x
)
x
=
self
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
def
test_lenet5_onnx_export
():
input
=
Tensor
(
np
.
ones
([
1
,
1
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
net
=
LeNet5
()
export
(
net
,
input
,
file_name
=
'lenet5.onnx'
,
file_format
=
'ONNX'
)
class
DefinedNet
(
nn
.
Cell
):
"""simple Net definition with maxpoolwithargmax."""
def
__init__
(
self
,
num_classes
=
10
):
super
(
DefinedNet
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
0
,
weight_init
=
"zeros"
)
self
.
bn1
=
nn
.
BatchNorm2d
(
64
)
self
.
relu
=
nn
.
ReLU
()
self
.
maxpool
=
P
.
MaxPoolWithArgmax
(
padding
=
"same"
,
ksize
=
2
,
strides
=
2
)
self
.
flatten
=
nn
.
Flatten
()
self
.
fc
=
nn
.
Dense
(
int
(
56
*
56
*
64
),
num_classes
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
relu
(
x
)
x
,
argmax
=
self
.
maxpool
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc
(
x
)
return
x
def
test_net_onnx_maxpoolwithargmax_export
():
input
=
Tensor
(
np
.
ones
([
1
,
3
,
224
,
224
]).
astype
(
np
.
float32
)
*
0.01
)
net
=
DefinedNet
()
export
(
net
,
input
,
file_name
=
'definedNet.onnx'
,
file_format
=
'ONNX'
)
@
run_on_onnxruntime
def
test_lenet5_onnx_load_run
():
onnx_file
=
'lenet5.onnx'
input
=
Tensor
(
np
.
ones
([
1
,
1
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
net
=
LeNet5
()
export
(
net
,
input
,
file_name
=
onnx_file
,
file_format
=
'ONNX'
)
import
onnx
import
onnxruntime
as
ort
print
(
'--------------------- onnx load ---------------------'
)
# Load the ONNX model
model
=
onnx
.
load
(
onnx_file
)
# Check that the IR is well formed
onnx
.
checker
.
check_model
(
model
)
# Print a human readable representation of the graph
g
=
onnx
.
helper
.
printable_graph
(
model
.
graph
)
print
(
g
)
print
(
'------------------ onnxruntime run ------------------'
)
ort_session
=
ort
.
InferenceSession
(
onnx_file
)
input_map
=
{
'x'
:
input
.
asnumpy
()}
# provide only input x to run model
outputs
=
ort_session
.
run
(
None
,
input_map
)
print
(
outputs
[
0
])
# overwrite default weight to run model
for
item
in
net
.
trainable_params
():
input_map
[
item
.
name
]
=
np
.
ones
(
item
.
default_input
.
asnumpy
().
shape
,
dtype
=
np
.
float32
)
outputs
=
ort_session
.
run
(
None
,
input_map
)
print
(
outputs
[
0
])
@
run_on_onnxruntime
def
test_depthwiseconv_relu6_onnx_load_run
():
onnx_file
=
'depthwiseconv_relu6.onnx'
input_channel
=
3
input
=
Tensor
(
np
.
ones
([
1
,
input_channel
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
net
=
DepthwiseConv2dAndReLU6
(
input_channel
,
kernel_size
=
3
)
export
(
net
,
input
,
file_name
=
onnx_file
,
file_format
=
'ONNX'
)
import
onnx
import
onnxruntime
as
ort
print
(
'--------------------- onnx load ---------------------'
)
# Load the ONNX model
model
=
onnx
.
load
(
onnx_file
)
# Check that the IR is well formed
onnx
.
checker
.
check_model
(
model
)
# Print a human readable representation of the graph
g
=
onnx
.
helper
.
printable_graph
(
model
.
graph
)
print
(
g
)
print
(
'------------------ onnxruntime run ------------------'
)
ort_session
=
ort
.
InferenceSession
(
onnx_file
)
input_map
=
{
'x'
:
input
.
asnumpy
()}
# provide only input x to run model
outputs
=
ort_session
.
run
(
None
,
input_map
)
print
(
outputs
[
0
])
# overwrite default weight to run model
for
item
in
net
.
trainable_params
():
input_map
[
item
.
name
]
=
np
.
ones
(
item
.
default_input
.
asnumpy
().
shape
,
dtype
=
np
.
float32
)
outputs
=
ort_session
.
run
(
None
,
input_map
)
print
(
outputs
[
0
])
def
teardown_module
():
def
teardown_module
():
files
=
[
'parameters.ckpt'
,
'new_ckpt.ckpt'
,
'
lenet5.onnx'
,
'batch_norm.onnx'
,
'
empty.ckpt'
]
files
=
[
'parameters.ckpt'
,
'new_ckpt.ckpt'
,
'empty.ckpt'
]
for
item
in
files
:
for
item
in
files
:
file_name
=
'./'
+
item
file_name
=
'./'
+
item
if
not
os
.
path
.
exists
(
file_name
):
if
not
os
.
path
.
exists
(
file_name
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录