提交 f940b668 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!738 fix issues

Merge pull request !738 from zhaozhenlong/fix-issues-conv2d-example
......@@ -634,6 +634,12 @@ class Conv2D(PrimitiveWithInfer):
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
>>> conv2d = P.Conv2D(out_channel=32, kernel_size=3)
>>> conv2d(input, weight)
"""
@prim_attr_register
......@@ -1090,6 +1096,13 @@ class Conv2DBackpropInput(PrimitiveWithInfer):
Returns:
Tensor, the gradients of convolution.
Examples:
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
>>> x = Tensor(np.ones([10, 32, 32, 32]))
>>> conv2d_backprop_input = P.Conv2DBackpropInput(out_channel=32, kernel_size=3)
>>> conv2d_backprop_input(dout, weight, F.shape(x))
"""
@prim_attr_register
......@@ -1262,6 +1275,9 @@ class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
Outputs:
Tuple of 2 Tensor, the loss shape is `(N,)`, and the dlogits with the same shape as `logits`.
Examples:
Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code.
"""
@prim_attr_register
......@@ -1306,6 +1322,9 @@ class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
Outputs:
Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor;
if `is_grad` is True, the output tensor is the gradient of input with the same shape as `logits`.
Examples:
Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code.
"""
@prim_attr_register
......@@ -2117,6 +2136,12 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer):
Outputs:
Tensor, with the same shape and type as input `logits`.
Examples:
>>> logits = Tensor(np.random.randn(2, 3).astype(np.float16))
>>> labels = Tensor(np.random.randn(2, 3).astype(np.float16))
>>> sigmoid = P.SigmoidCrossEntropyWithLogits()
>>> sigmoid(logits, labels)
"""
@prim_attr_register
......@@ -2471,6 +2496,14 @@ class SparseApplyAdagrad(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as `var`.
Examples:
var = Tensor(np.random.random((3, 3)), mindspore.float32)
accum = Tensor(np.random.random((3, 3)), mindspore.float32)
grad = Tensor(np.random.random((3, 3)), mindspore.float32)
indices = Tensor(np.ones((3,), np.int32))
sparse_apply_ada_grad = P.SparseApplyAdagrad(0.5)
sparse_apply_ada_grad(var, accum, grad, indices)
"""
@prim_attr_register
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册