提交 f93e6beb 编写于 作者: K kswang

add cpu strided slice

上级 fb7e4eac
...@@ -47,6 +47,7 @@ const char TRANSPOSE_NO = 'N'; ...@@ -47,6 +47,7 @@ const char TRANSPOSE_NO = 'N';
const char TRANSPOSE_YES = 'T'; const char TRANSPOSE_YES = 'T';
const char AXIS[] = "axis"; const char AXIS[] = "axis";
const char BEGIN[] = "begin"; const char BEGIN[] = "begin";
const char END[] = "end";
const char SIZE[] = "size"; const char SIZE[] = "size";
class CPUKernel : public kernel::KernelMod { class CPUKernel : public kernel::KernelMod {
......
...@@ -21,31 +21,53 @@ namespace mindspore { ...@@ -21,31 +21,53 @@ namespace mindspore {
namespace kernel { namespace kernel {
void SliceCPUKernel::InitKernel(const CNodePtr &kernel_node) { void SliceCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node); CheckParam(kernel_node);
begin_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, BEGIN);
size_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, SIZE);
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape_.size() < 4) {
for (size_t i = 0; i < 4 - input_shape_.size(); ++i) {
input_shape_.insert(input_shape_.begin(), 1);
begin_.insert(begin_.begin(), 0);
size_.insert(size_.begin(), 1);
}
}
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0); output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
CPUKernelUtils::ExpandDimsTo4(&output_shape_); CPUKernelUtils::ExpandDimsTo4(&output_shape_);
begin_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, BEGIN);
for (size_t i = 0; i < begin_.size(); i++) { for (size_t i = 0; i < begin_.size(); i++) {
if (begin_[i] < 0) { if (begin_[i] < 0) {
begin_[i] = begin_[i] + input_shape_[i]; begin_[i] = begin_[i] + input_shape_[i];
} }
} }
auto prim = AnfAlgo::GetCNodePrimitive(kernel_node);
for (size_t i = 0; i < size_.size(); i++) { MS_EXCEPTION_IF_NULL(prim);
if (size_[i] < 0) { auto strides = prim->GetAttr(STRIDES);
size_[i] = (size_[i] + input_shape_[i]) > 0 ? (size_[i] + input_shape_[i]) : 0; if (strides != nullptr) {
strides_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, STRIDES);
end_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, END);
if (strides_.size() != end_.size() || strides_.size() != input_shape_.size()) {
MS_LOG(EXCEPTION) << "stride|end|input size must be equal";
}
for (size_t i = 0; i < strides_.size(); ++i) {
if (strides_[i] < 0) {
strides_[i] = (strides_[i] + input_shape_[i]) > 0 ? (strides_[i] + input_shape_[i]) : 0;
}
if (end_[i] < 0) {
end_[i] = (end_[i] + input_shape_[i]) > 0 ? (end_[i] + input_shape_[i]) : 0;
}
}
} else {
auto sizes = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, SIZE);
if (sizes.size() != input_shape_.size() || begin_.size() != input_shape_.size()) {
MS_LOG(EXCEPTION) << "begin|size|input size must be equal";
}
for (size_t i = 0; i < sizes.size(); ++i) {
if (sizes[i] < 0) {
sizes[i] = (sizes[i] + input_shape_[i]) > 0 ? (sizes[i] + input_shape_[i]) : 0;
}
strides_.emplace_back(1);
end_.emplace_back(begin_[i] + sizes[i]);
}
}
auto input_len = input_shape_.size();
if (input_len < 4) {
for (size_t i = 0; i < 4 - input_len; ++i) {
input_shape_.insert(input_shape_.begin(), 1);
begin_.insert(begin_.begin(), 0);
strides_.insert(strides_.begin(), 1);
end_.insert(end_.begin(), 1);
} }
} }
} }
...@@ -56,10 +78,10 @@ bool SliceCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, ...@@ -56,10 +78,10 @@ bool SliceCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
auto input_addr = reinterpret_cast<float *>(inputs[0]->addr); auto input_addr = reinterpret_cast<float *>(inputs[0]->addr);
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr); auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
for (int i = begin_[0]; i < begin_[0] + size_[0]; ++i) { for (int i = begin_[0]; i < end_[0]; i += strides_[0]) {
for (int j = begin_[1]; j < begin_[1] + size_[1]; ++j) { for (int j = begin_[1]; j < end_[1]; j += strides_[1]) {
for (int k = begin_[2]; k < begin_[2] + size_[2]; ++k) { for (int k = begin_[2]; k < end_[2]; k += strides_[2]) {
for (int m = begin_[3]; m < begin_[3] + size_[3]; ++m) { for (int m = begin_[3]; m < end_[3]; m += strides_[3]) {
auto offset = CPUKernelUtils::CalcOffset(input_shape_, i, j, k, m); auto offset = CPUKernelUtils::CalcOffset(input_shape_, i, j, k, m);
*output_addr++ = input_addr[offset]; *output_addr++ = input_addr[offset];
} }
......
...@@ -35,13 +35,16 @@ class SliceCPUKernel : public CPUKernel { ...@@ -35,13 +35,16 @@ class SliceCPUKernel : public CPUKernel {
private: private:
void CheckParam(const CNodePtr &kernel_node); void CheckParam(const CNodePtr &kernel_node);
std::vector<int> begin_; std::vector<int> begin_;
std::vector<int> size_; std::vector<int> end_;
std::vector<int> strides_;
std::vector<size_t> input_shape_; std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_; std::vector<size_t> output_shape_;
}; };
MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SliceCPUKernel); SliceCPUKernel);
MS_REG_CPU_KERNEL(StridedSlice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SliceCPUKernel);
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore
......
...@@ -21,33 +21,54 @@ namespace mindspore { ...@@ -21,33 +21,54 @@ namespace mindspore {
namespace kernel { namespace kernel {
void SliceGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { void SliceGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node); CheckParam(kernel_node);
begin_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, BEGIN);
size_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, SIZE);
input_dy_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_dy_shape_.size() < 4) {
for (size_t i = 0; i < 4 - input_dy_shape_.size(); ++i) {
input_dy_shape_.insert(input_dy_shape_.begin(), 1);
begin_.insert(begin_.begin(), 0);
size_.insert(size_.begin(), 1);
}
}
input_x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
output_dx_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0); output_dx_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
CPUKernelUtils::ExpandDimsTo4(&input_x_shape_); input_dy_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
CPUKernelUtils::ExpandDimsTo4(&output_dx_shape_);
begin_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, BEGIN);
for (size_t i = 0; i < begin_.size(); i++) { for (size_t i = 0; i < begin_.size(); i++) {
if (begin_[i] < 0) { if (begin_[i] < 0) {
begin_[i] = begin_[i] + input_x_shape_[i]; begin_[i] = begin_[i] + output_dx_shape_[i];
} }
} }
for (size_t i = 0; i < size_.size(); i++) { auto prim = AnfAlgo::GetCNodePrimitive(kernel_node);
if (size_[i] < 0) { MS_EXCEPTION_IF_NULL(prim);
size_[i] = (size_[i] + input_x_shape_[i]) > 0 ? (size_[i] + input_x_shape_[i]) : 0; auto strides = prim->GetAttr(STRIDES);
if (strides != nullptr) {
strides_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, STRIDES);
end_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, END);
if (strides_.size() != end_.size() || strides_.size() != output_dx_shape_.size()) {
MS_LOG(EXCEPTION) << "stride|end|input size must be equal";
}
for (size_t i = 0; i < strides_.size(); ++i) {
if (strides_[i] < 0) {
strides_[i] = (strides_[i] + output_dx_shape_[i]) > 0 ? (strides_[i] + output_dx_shape_[i]) : 0;
}
if (end_[i] < 0) {
end_[i] = (end_[i] + output_dx_shape_[i]) > 0 ? (end_[i] + output_dx_shape_[i]) : 0;
}
}
} else {
auto sizes = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, SIZE);
if (sizes.size() != output_dx_shape_.size() || begin_.size() != output_dx_shape_.size()) {
MS_LOG(EXCEPTION) << "begin|size|input size must be equal";
}
for (size_t i = 0; i < sizes.size(); ++i) {
if (sizes[i] < 0) {
sizes[i] = (sizes[i] + output_dx_shape_[i]) > 0 ? (sizes[i] + output_dx_shape_[i]) : 0;
}
strides_.emplace_back(1);
end_.emplace_back(begin_[i] + sizes[i]);
}
}
CPUKernelUtils::ExpandDimsTo4(&output_dx_shape_);
auto input_len = input_dy_shape_.size();
if (input_len < 4) {
for (size_t i = 0; i < 4 - input_len; ++i) {
input_dy_shape_.insert(input_dy_shape_.begin(), 1);
begin_.insert(begin_.begin(), 0);
strides_.insert(strides_.begin(), 1);
end_.insert(end_.begin(), 1);
} }
} }
} }
...@@ -65,10 +86,10 @@ bool SliceGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, ...@@ -65,10 +86,10 @@ bool SliceGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
return false; return false;
} }
for (int i = begin_[0]; i < begin_[0] + size_[0]; ++i) { for (int i = begin_[0]; i < end_[0]; i += strides_[0]) {
for (int j = begin_[1]; j < begin_[1] + size_[1]; ++j) { for (int j = begin_[1]; j < end_[1]; j += strides_[1]) {
for (int k = begin_[2]; k < begin_[2] + size_[2]; ++k) { for (int k = begin_[2]; k < end_[2]; k += strides_[2]) {
for (int m = begin_[3]; m < begin_[3] + size_[3]; ++m) { for (int m = begin_[3]; m < end_[3]; m += strides_[3]) {
auto offset = CPUKernelUtils::CalcOffset(output_dx_shape_, i, j, k, m); auto offset = CPUKernelUtils::CalcOffset(output_dx_shape_, i, j, k, m);
output_dx_addr[offset] = *input_dy_addr++; output_dx_addr[offset] = *input_dy_addr++;
} }
......
...@@ -35,9 +35,9 @@ class SliceGradCPUKernel : public CPUKernel { ...@@ -35,9 +35,9 @@ class SliceGradCPUKernel : public CPUKernel {
private: private:
void CheckParam(const CNodePtr &kernel_node); void CheckParam(const CNodePtr &kernel_node);
std::vector<int> begin_; std::vector<int> begin_;
std::vector<int> size_; std::vector<int> end_;
std::vector<int> strides_;
std::vector<size_t> input_dy_shape_; std::vector<size_t> input_dy_shape_;
std::vector<size_t> input_x_shape_;
std::vector<size_t> output_dx_shape_; std::vector<size_t> output_dx_shape_;
}; };
...@@ -45,6 +45,8 @@ MS_REG_CPU_KERNEL( ...@@ -45,6 +45,8 @@ MS_REG_CPU_KERNEL(
SliceGrad, SliceGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SliceGradCPUKernel); SliceGradCPUKernel);
MS_REG_CPU_KERNEL(StridedSliceGrad, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SliceGradCPUKernel);
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class StridedSliceGrad(nn.Cell):
def __init__(self):
super(StridedSliceGrad, self).__init__()
self.ssg = G.StridedSliceGrad()
self.shape = P.Shape()
@ms_function
def construct(self, dy, x):
return self.ssg(dy, self.shape(x), (2, 0, 0), (3, 2, 3), (1, 1, 1))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_slice():
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
dy = Tensor(np.array([[[5., 1., 5.], [6., 1., 8.]]]).astype(np.float32))
ssg = StridedSliceGrad()
output = ssg(dy, x)
expect = [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[5, 1, 5], [6, 1, 8]]]
assert (output.asnumpy() == expect).all()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class StridedSlice(nn.Cell):
def __init__(self):
super(StridedSlice, self).__init__()
self.stridedslice = P.StridedSlice()
def construct(self, x):
return self.stridedslice(x, (2, 0, 0), (3, 2, 3), (1, 1, 1))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_slice():
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
stridedslice = StridedSlice()
output = stridedslice(x)
expect = [[[5., 5., 5.],
[6., 7., 8.]]]
assert (output.asnumpy() == expect).all()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册