Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
f6d7d977
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f6d7d977
编写于
7月 22, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 22, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3281 Fix some API description of ops.
Merge pull request !3281 from liuxiao93/fix-api-bug
上级
ac993460
75c38a08
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
9 addition
and
9 deletion
+9
-9
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+3
-2
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+6
-7
未找到文件。
mindspore/ops/operations/array_ops.py
浏览文件 @
f6d7d977
...
@@ -448,7 +448,7 @@ class Squeeze(PrimitiveWithInfer):
...
@@ -448,7 +448,7 @@ class Squeeze(PrimitiveWithInfer):
ValueError: If the corresponding dimension of the specified axis does not equal to 1.
ValueError: If the corresponding dimension of the specified axis does not equal to 1.
Args:
Args:
axis (
int
): Specifies the dimension indexes of shape to be removed, which will remove
axis (
Union[int, tuple(int)]
): Specifies the dimension indexes of shape to be removed, which will remove
all the dimensions that are equal to 1. If specified, it must be int32 or int64.
all the dimensions that are equal to 1. If specified, it must be int32 or int64.
Default: (), an empty tuple.
Default: (), an empty tuple.
...
@@ -1440,7 +1440,8 @@ class UnsortedSegmentProd(PrimitiveWithInfer):
...
@@ -1440,7 +1440,8 @@ class UnsortedSegmentProd(PrimitiveWithInfer):
Inputs:
Inputs:
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
With float16, float32 or int32 data type.
With float16, float32 or int32 data type.
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is :math:`(x_1)`. Data type must be int32.
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is :math:`(x_1)`, the value should be >= 0.
Data type must be int32.
- **num_segments** (int) - The value spcifies the number of distinct `segment_ids`,
- **num_segments** (int) - The value spcifies the number of distinct `segment_ids`,
should be greater than 0.
should be greater than 0.
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
f6d7d977
...
@@ -3760,12 +3760,12 @@ class ApplyAdagradV2(PrimitiveWithInfer):
...
@@ -3760,12 +3760,12 @@ class ApplyAdagradV2(PrimitiveWithInfer):
update_slots (bool): If `True`, `accum` will be updated. Default: True.
update_slots (bool): If `True`, `accum` will be updated. Default: True.
Inputs:
Inputs:
- **var** (Parameter) - Variable to be updated. With float32
or float16
data type.
- **var** (Parameter) - Variable to be updated. With float32 data type.
- **accum** (Parameter) - Accum to be updated. The shape and dtype should be the same as `var`.
- **accum** (Parameter) - Accum to be updated. The shape and dtype should be the same as `var`.
With float32
or float16
data type.
With float32 data type.
- **lr** (Union[Number, Tensor]) - The learning rate value, should be scalar. With float32
or float16
data type.
- **lr** (Union[Number, Tensor]) - The learning rate value, should be scalar. With float32 data type.
- **grad** (Tensor) - A tensor for gradient. The shape and dtype should be the same as `var`.
- **grad** (Tensor) - A tensor for gradient. The shape and dtype should be the same as `var`.
With float32
or float16
data type.
With float32 data type.
Outputs:
Outputs:
Tuple of 2 Tensor, the updated parameters.
Tuple of 2 Tensor, the updated parameters.
...
@@ -3817,9 +3817,8 @@ class ApplyAdagradV2(PrimitiveWithInfer):
...
@@ -3817,9 +3817,8 @@ class ApplyAdagradV2(PrimitiveWithInfer):
def
infer_dtype
(
self
,
var_dtype
,
accum_dtype
,
lr_dtype
,
grad_dtype
):
def
infer_dtype
(
self
,
var_dtype
,
accum_dtype
,
lr_dtype
,
grad_dtype
):
args
=
{
'var'
:
var_dtype
,
'accum'
:
accum_dtype
,
'grad'
:
grad_dtype
}
args
=
{
'var'
:
var_dtype
,
'accum'
:
accum_dtype
,
'grad'
:
grad_dtype
}
valid_types
=
[
mstype
.
float16
,
mstype
.
float32
]
validator
.
check_tensor_type_same
(
args
,
[
mstype
.
float32
],
self
.
name
)
validator
.
check_tensor_type_same
(
args
,
valid_types
,
self
.
name
)
validator
.
check_scalar_or_tensor_type_same
({
'lr'
:
lr_dtype
},
[
mstype
.
float32
],
self
.
name
)
validator
.
check_scalar_or_tensor_type_same
({
'lr'
:
lr_dtype
},
valid_types
,
self
.
name
)
return
var_dtype
,
accum_dtype
return
var_dtype
,
accum_dtype
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录