提交 f367839c 编写于 作者: P panfengfeng

update fastrcnn dataset codes

上级 42b0d49d
...@@ -23,6 +23,8 @@ from numpy import random ...@@ -23,6 +23,8 @@ from numpy import random
import mmcv import mmcv
import mindspore.dataset as de import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as CC
import mindspore.common.dtype as mstype
from mindspore.mindrecord import FileWriter from mindspore.mindrecord import FileWriter
from src.config import config from src.config import config
...@@ -229,6 +231,21 @@ def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num): ...@@ -229,6 +231,21 @@ def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num):
return (img_data, img_shape, flipped, gt_label, gt_num) return (img_data, img_shape, flipped, gt_label, gt_num)
def flipped_generation(img, img_shape, gt_bboxes, gt_label, gt_num):
"""flipped generation"""
img_data = img
flipped = gt_bboxes.copy()
_, w, _ = img_data.shape
flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1
flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1
return (img_data, img_shape, flipped, gt_label, gt_num)
def image_bgr_rgb(img, img_shape, gt_bboxes, gt_label, gt_num):
img_data = img[:, :, ::-1]
return (img_data, img_shape, gt_bboxes, gt_label, gt_num)
def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num): def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num):
"""transpose operation for image""" """transpose operation for image"""
img_data = img.transpose(2, 0, 1).copy() img_data = img.transpose(2, 0, 1).copy()
...@@ -264,9 +281,10 @@ def preprocess_fn(image, box, is_training): ...@@ -264,9 +281,10 @@ def preprocess_fn(image, box, is_training):
input_data = rescale_column(*input_data) input_data = rescale_column(*input_data)
else: else:
input_data = resize_column_test(*input_data) input_data = resize_column_test(*input_data)
input_data = imnormalize_column(*input_data)
output_data = transpose_column(*input_data) input_data = image_bgr_rgb(*input_data)
output_data = input_data
return output_data return output_data
def _data_aug(image, box, is_training): def _data_aug(image, box, is_training):
...@@ -289,24 +307,24 @@ def preprocess_fn(image, box, is_training): ...@@ -289,24 +307,24 @@ def preprocess_fn(image, box, is_training):
if not is_training: if not is_training:
return _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert) return _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert)
flip = (np.random.rand() < config.flip_ratio)
photo = (np.random.rand() < config.photo_ratio)
expand = (np.random.rand() < config.expand_ratio)
input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert
expand = (np.random.rand() < config.expand_ratio)
if expand: if expand:
input_data = expand_column(*input_data) input_data = expand_column(*input_data)
if config.keep_ratio: if config.keep_ratio:
input_data = rescale_column(*input_data) input_data = rescale_column(*input_data)
else: else:
input_data = resize_column(*input_data) input_data = resize_column(*input_data)
photo = (np.random.rand() < config.photo_ratio)
if photo: if photo:
input_data = photo_crop_column(*input_data) input_data = photo_crop_column(*input_data)
input_data = imnormalize_column(*input_data)
if flip:
input_data = flip_column(*input_data)
output_data = transpose_column(*input_data) input_data = image_bgr_rgb(*input_data)
output_data = input_data
return output_data return output_data
return _data_aug(image, box, is_training) return _data_aug(image, box, is_training)
...@@ -423,11 +441,36 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi ...@@ -423,11 +441,36 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
ds = ds.map(input_columns=["image"], operations=decode) ds = ds.map(input_columns=["image"], operations=decode)
compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training))
hwc_to_chw = C.HWC2CHW()
normalize_op = C.Normalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375))
horizontally_op = C.RandomHorizontalFlip(1)
type_cast0 = CC.TypeCast(mstype.float32)
type_cast1 = CC.TypeCast(mstype.float16)
type_cast2 = CC.TypeCast(mstype.int32)
type_cast3 = CC.TypeCast(mstype.bool_)
if is_training: if is_training:
ds = ds.map(input_columns=["image", "annotation"], ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "image_shape", "box", "label", "valid_num"], output_columns=["image", "image_shape", "box", "label", "valid_num"],
columns_order=["image", "image_shape", "box", "label", "valid_num"], columns_order=["image", "image_shape", "box", "label", "valid_num"],
operations=compose_map_func, python_multiprocessing=True, num_parallel_workers=num_parallel_workers) operations=compose_map_func, num_parallel_workers=4)
ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0],
num_parallel_workers=num_parallel_workers)
flip = (np.random.rand() < config.flip_ratio)
if flip:
ds = ds.map(input_columns=["image"], operations=[horizontally_op],
num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image", "image_shape", "box", "label", "valid_num"],
operations=flipped_generation, num_parallel_workers=4)
# transpose_column from python to c
ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1])
ds = ds.map(input_columns=["image_shape"], operations=[type_cast1])
ds = ds.map(input_columns=["box"], operations=[type_cast1])
ds = ds.map(input_columns=["label"], operations=[type_cast2])
ds = ds.map(input_columns=["valid_num"], operations=[type_cast3])
ds = ds.batch(batch_size, drop_remainder=True) ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num) ds = ds.repeat(repeat_num)
else: else:
...@@ -436,6 +479,12 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi ...@@ -436,6 +479,12 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
columns_order=["image", "image_shape", "box", "label", "valid_num"], columns_order=["image", "image_shape", "box", "label", "valid_num"],
operations=compose_map_func, operations=compose_map_func,
num_parallel_workers=num_parallel_workers) num_parallel_workers=num_parallel_workers)
# transpose_column from python to c
ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1])
ds = ds.map(input_columns=["image_shape"], operations=[type_cast1])
ds = ds.map(input_columns=["box"], operations=[type_cast1])
ds = ds.map(input_columns=["label"], operations=[type_cast2])
ds = ds.map(input_columns=["valid_num"], operations=[type_cast3])
ds = ds.batch(batch_size, drop_remainder=True) ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num) ds = ds.repeat(repeat_num)
return ds return ds
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册