Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
f367839c
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f367839c
编写于
6月 09, 2020
作者:
P
panfengfeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update fastrcnn dataset codes
上级
42b0d49d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
59 addition
and
10 deletion
+59
-10
model_zoo/faster_rcnn/src/dataset.py
model_zoo/faster_rcnn/src/dataset.py
+59
-10
未找到文件。
model_zoo/faster_rcnn/src/dataset.py
浏览文件 @
f367839c
...
@@ -23,6 +23,8 @@ from numpy import random
...
@@ -23,6 +23,8 @@ from numpy import random
import
mmcv
import
mmcv
import
mindspore.dataset
as
de
import
mindspore.dataset
as
de
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
CC
import
mindspore.common.dtype
as
mstype
from
mindspore.mindrecord
import
FileWriter
from
mindspore.mindrecord
import
FileWriter
from
src.config
import
config
from
src.config
import
config
...
@@ -229,6 +231,21 @@ def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num):
...
@@ -229,6 +231,21 @@ def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num):
return
(
img_data
,
img_shape
,
flipped
,
gt_label
,
gt_num
)
return
(
img_data
,
img_shape
,
flipped
,
gt_label
,
gt_num
)
def
flipped_generation
(
img
,
img_shape
,
gt_bboxes
,
gt_label
,
gt_num
):
"""flipped generation"""
img_data
=
img
flipped
=
gt_bboxes
.
copy
()
_
,
w
,
_
=
img_data
.
shape
flipped
[...,
0
::
4
]
=
w
-
gt_bboxes
[...,
2
::
4
]
-
1
flipped
[...,
2
::
4
]
=
w
-
gt_bboxes
[...,
0
::
4
]
-
1
return
(
img_data
,
img_shape
,
flipped
,
gt_label
,
gt_num
)
def
image_bgr_rgb
(
img
,
img_shape
,
gt_bboxes
,
gt_label
,
gt_num
):
img_data
=
img
[:,
:,
::
-
1
]
return
(
img_data
,
img_shape
,
gt_bboxes
,
gt_label
,
gt_num
)
def
transpose_column
(
img
,
img_shape
,
gt_bboxes
,
gt_label
,
gt_num
):
def
transpose_column
(
img
,
img_shape
,
gt_bboxes
,
gt_label
,
gt_num
):
"""transpose operation for image"""
"""transpose operation for image"""
img_data
=
img
.
transpose
(
2
,
0
,
1
).
copy
()
img_data
=
img
.
transpose
(
2
,
0
,
1
).
copy
()
...
@@ -264,9 +281,10 @@ def preprocess_fn(image, box, is_training):
...
@@ -264,9 +281,10 @@ def preprocess_fn(image, box, is_training):
input_data
=
rescale_column
(
*
input_data
)
input_data
=
rescale_column
(
*
input_data
)
else
:
else
:
input_data
=
resize_column_test
(
*
input_data
)
input_data
=
resize_column_test
(
*
input_data
)
input_data
=
imnormalize_column
(
*
input_data
)
output_data
=
transpose_column
(
*
input_data
)
input_data
=
image_bgr_rgb
(
*
input_data
)
output_data
=
input_data
return
output_data
return
output_data
def
_data_aug
(
image
,
box
,
is_training
):
def
_data_aug
(
image
,
box
,
is_training
):
...
@@ -289,24 +307,24 @@ def preprocess_fn(image, box, is_training):
...
@@ -289,24 +307,24 @@ def preprocess_fn(image, box, is_training):
if
not
is_training
:
if
not
is_training
:
return
_infer_data
(
image_bgr
,
image_shape
,
gt_box_new
,
gt_label_new
,
gt_iscrowd_new_revert
)
return
_infer_data
(
image_bgr
,
image_shape
,
gt_box_new
,
gt_label_new
,
gt_iscrowd_new_revert
)
flip
=
(
np
.
random
.
rand
()
<
config
.
flip_ratio
)
photo
=
(
np
.
random
.
rand
()
<
config
.
photo_ratio
)
expand
=
(
np
.
random
.
rand
()
<
config
.
expand_ratio
)
input_data
=
image_bgr
,
image_shape
,
gt_box_new
,
gt_label_new
,
gt_iscrowd_new_revert
input_data
=
image_bgr
,
image_shape
,
gt_box_new
,
gt_label_new
,
gt_iscrowd_new_revert
expand
=
(
np
.
random
.
rand
()
<
config
.
expand_ratio
)
if
expand
:
if
expand
:
input_data
=
expand_column
(
*
input_data
)
input_data
=
expand_column
(
*
input_data
)
if
config
.
keep_ratio
:
if
config
.
keep_ratio
:
input_data
=
rescale_column
(
*
input_data
)
input_data
=
rescale_column
(
*
input_data
)
else
:
else
:
input_data
=
resize_column
(
*
input_data
)
input_data
=
resize_column
(
*
input_data
)
photo
=
(
np
.
random
.
rand
()
<
config
.
photo_ratio
)
if
photo
:
if
photo
:
input_data
=
photo_crop_column
(
*
input_data
)
input_data
=
photo_crop_column
(
*
input_data
)
input_data
=
imnormalize_column
(
*
input_data
)
if
flip
:
input_data
=
flip_column
(
*
input_data
)
output_data
=
transpose_column
(
*
input_data
)
input_data
=
image_bgr_rgb
(
*
input_data
)
output_data
=
input_data
return
output_data
return
output_data
return
_data_aug
(
image
,
box
,
is_training
)
return
_data_aug
(
image
,
box
,
is_training
)
...
@@ -423,11 +441,36 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
...
@@ -423,11 +441,36 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
decode
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
decode
)
compose_map_func
=
(
lambda
image
,
annotation
:
preprocess_fn
(
image
,
annotation
,
is_training
))
compose_map_func
=
(
lambda
image
,
annotation
:
preprocess_fn
(
image
,
annotation
,
is_training
))
hwc_to_chw
=
C
.
HWC2CHW
()
normalize_op
=
C
.
Normalize
((
123.675
,
116.28
,
103.53
),
(
58.395
,
57.12
,
57.375
))
horizontally_op
=
C
.
RandomHorizontalFlip
(
1
)
type_cast0
=
CC
.
TypeCast
(
mstype
.
float32
)
type_cast1
=
CC
.
TypeCast
(
mstype
.
float16
)
type_cast2
=
CC
.
TypeCast
(
mstype
.
int32
)
type_cast3
=
CC
.
TypeCast
(
mstype
.
bool_
)
if
is_training
:
if
is_training
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
columns_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
columns_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
operations
=
compose_map_func
,
python_multiprocessing
=
True
,
num_parallel_workers
=
num_parallel_workers
)
operations
=
compose_map_func
,
num_parallel_workers
=
4
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
normalize_op
,
type_cast0
],
num_parallel_workers
=
num_parallel_workers
)
flip
=
(
np
.
random
.
rand
()
<
config
.
flip_ratio
)
if
flip
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
horizontally_op
],
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
operations
=
flipped_generation
,
num_parallel_workers
=
4
)
# transpose_column from python to c
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
hwc_to_chw
,
type_cast1
])
ds
=
ds
.
map
(
input_columns
=
[
"image_shape"
],
operations
=
[
type_cast1
])
ds
=
ds
.
map
(
input_columns
=
[
"box"
],
operations
=
[
type_cast1
])
ds
=
ds
.
map
(
input_columns
=
[
"label"
],
operations
=
[
type_cast2
])
ds
=
ds
.
map
(
input_columns
=
[
"valid_num"
],
operations
=
[
type_cast3
])
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
repeat
(
repeat_num
)
ds
=
ds
.
repeat
(
repeat_num
)
else
:
else
:
...
@@ -436,6 +479,12 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
...
@@ -436,6 +479,12 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
columns_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
columns_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
operations
=
compose_map_func
,
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
num_parallel_workers
=
num_parallel_workers
)
# transpose_column from python to c
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
hwc_to_chw
,
type_cast1
])
ds
=
ds
.
map
(
input_columns
=
[
"image_shape"
],
operations
=
[
type_cast1
])
ds
=
ds
.
map
(
input_columns
=
[
"box"
],
operations
=
[
type_cast1
])
ds
=
ds
.
map
(
input_columns
=
[
"label"
],
operations
=
[
type_cast2
])
ds
=
ds
.
map
(
input_columns
=
[
"valid_num"
],
operations
=
[
type_cast3
])
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
repeat
(
repeat_num
)
ds
=
ds
.
repeat
(
repeat_num
)
return
ds
return
ds
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录