提交 ec5363ad 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1593 Fix the bug that there is only return node in the forward graph

Merge pull request !1593 from yangzhenzhang/reshape-optimized
......@@ -1683,7 +1683,10 @@ CNodePtr FindLossCNode(const FuncGraphPtr &func_graph) {
MS_EXCEPTION_IF_NULL(pre_node);
auto pre_cnode = pre_node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(pre_cnode);
if (pre_cnode == nullptr) {
return nullptr;
}
auto current_prim = GetValueNode<PrimitivePtr>(pre_cnode->input(0));
// return -> cast
if (current_prim->name() == CAST && pre_cnode->operator_info() == nullptr) {
......@@ -1907,21 +1910,6 @@ void StepSplitSens(const std::pair<CNodePtr, CNodePtr> &sens_loss_pair) {
}
}
std::vector<CNodePtr> FindLossCNodeFromRoot(const FuncGraphPtr &root) {
MS_EXCEPTION_IF_NULL(root);
AnfNodePtr root_return_node = root->get_return();
MS_EXCEPTION_IF_NULL(root_return_node);
std::vector<CNodePtr> loss_node;
const auto &all_nodes = root->nodes();
std::set<FuncGraphPtr> graph_set = FindForwardGraphByRootNodes(all_nodes);
if (graph_set.empty()) {
loss_node.push_back(FindLossCNode(root));
}
(void)std::transform(graph_set.begin(), graph_set.end(), std::back_inserter(loss_node),
[](const FuncGraphPtr &graph) { return FindLossCNode(graph); });
return loss_node;
}
// Sens node satisfies the following conditions: cnode(sens)-->cnode(tuple_getitem)-->cnode-->cnode(J)
std::vector<std::pair<CNodePtr, CNodePtr>> GetSensLossPairs(const FuncGraphPtr &root) {
MS_EXCEPTION_IF_NULL(root);
......@@ -1968,6 +1956,10 @@ std::vector<std::pair<CNodePtr, CNodePtr>> GetSensLossPairs(const FuncGraphPtr &
}
auto func_graph = GetValueNode<FuncGraphPtr>(expect_j_cnode->input(1));
auto loss_cnode = FindLossCNode(func_graph);
if (loss_cnode == nullptr) {
MS_LOG(WARNING) << "Can not find the loss cnode";
continue;
}
std::pair<CNodePtr, CNodePtr> sens_loss_pair = std::make_pair(sens_cnode, loss_cnode);
sens_loss_pairs.push_back(sens_loss_pair);
}
......@@ -2158,10 +2150,14 @@ std::set<FuncGraphPtr> ForwardGraph(const FuncGraphPtr &root) {
std::vector<AnfNodePtr> FindRootForwardCNode(const FuncGraphPtr &graph, const AnfNodeSet &all_nodes) {
MS_EXCEPTION_IF_NULL(graph);
std::vector<AnfNodePtr> root_forward_nodes;
auto loss_cnode = FindLossCNode(graph);
MS_EXCEPTION_IF_NULL(loss_cnode);
if (loss_cnode == nullptr) {
MS_LOG(WARNING) << "Can not find the loss cnode";
return root_forward_nodes;
}
auto loss_cnode_id = loss_cnode->UniqueIdThroughCopy();
std::vector<AnfNodePtr> root_forward_nodes;
for (auto &node : all_nodes) {
MS_EXCEPTION_IF_NULL(node);
if (!node->isa<CNode>()) {
......
......@@ -144,8 +144,6 @@ bool StepParallel(const FuncGraphPtr &func_graph, const opt::OptimizerPtr &optim
int32_t GetTupleGetItemIndex(const CNodePtr &cnode);
std::vector<CNodePtr> FindLossCNodeFromRoot(const FuncGraphPtr &root);
Status ParallelInit();
std::vector<std::string> ExtractInputsTensorName(const CNodePtr &node);
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.common.api import _executor
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, mul_weight):
super().__init__()
self.reshape1 = P.Reshape()
self.reshape2 = P.Reshape()
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.reshape1(self.mul_weight, (128, 64, 32))
out = self.reshape2(out, (128, 64, 32))
return out
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_reshape_optimized():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile_net(net)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册