提交 eaf7146d 编写于 作者: 高东海's avatar 高东海

modify longtime python ut

上级 d84bf8d3
...@@ -159,7 +159,7 @@ class Conv2d(_Conv): ...@@ -159,7 +159,7 @@ class Conv2d(_Conv):
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal') >>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = mindspore.Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) >>> input = mindspore.Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape() >>> net(input).shape()
(1, 240, 1024, 637) (1, 240, 1024, 640)
""" """
@cell_attr_register @cell_attr_register
def __init__(self, def __init__(self,
......
...@@ -49,16 +49,16 @@ def test_reshape_matmul(): ...@@ -49,16 +49,16 @@ def test_reshape_matmul():
super().__init__() super().__init__()
self.reshape = P.Reshape() self.reshape = P.Reshape()
self.matmul = P.MatMul() self.matmul = P.MatMul()
self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
def construct(self, x): def construct(self, x):
out = self.reshape(x, (256, 25088)) out = self.reshape(x, (64, 28))
out = self.matmul(out, self.matmul_weight) out = self.matmul(out, self.matmul_weight)
return out return out
size = 8 size = 8
context.set_auto_parallel_context(device_num=size, global_rank=0) context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([32*size, 512, 7, 7]), dtype=ms.float32) x = Tensor(np.ones([8*size, 28, 1, 1]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net())) net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="auto_parallel") context.set_auto_parallel_context(parallel_mode="auto_parallel")
......
...@@ -247,15 +247,15 @@ def fc_with_initialize(input_channels, out_channels): ...@@ -247,15 +247,15 @@ def fc_with_initialize(input_channels, out_channels):
class BNReshapeDenseBNNet(nn.Cell): class BNReshapeDenseBNNet(nn.Cell):
def __init__(self): def __init__(self):
super(BNReshapeDenseBNNet, self).__init__() super(BNReshapeDenseBNNet, self).__init__()
self.batch_norm = bn_with_initialize(512) self.batch_norm = bn_with_initialize(2)
self.reshape = P.Reshape() self.reshape = P.Reshape()
self.batch_norm2 = nn.BatchNorm1d(512, affine=False) self.batch_norm2 = nn.BatchNorm1d(512, affine=False)
self.fc = fc_with_initialize(512 * 32 * 32, 512) self.fc = fc_with_initialize(2 * 32 * 32, 512)
self.loss = SemiAutoOneHotNet(args=Args(), strategy=StrategyBatch()) self.loss = SemiAutoOneHotNet(args=Args(), strategy=StrategyBatch())
def construct(self, x, label): def construct(self, x, label):
x = self.batch_norm(x) x = self.batch_norm(x)
x = self.reshape(x, (16, 512*32*32)) x = self.reshape(x, (16, 2*32*32))
x = self.fc(x) x = self.fc(x)
x = self.batch_norm2(x) x = self.batch_norm2(x)
loss = self.loss(x, label) loss = self.loss(x, label)
...@@ -266,7 +266,7 @@ def test_bn_reshape_dense_bn_train_loss(): ...@@ -266,7 +266,7 @@ def test_bn_reshape_dense_bn_train_loss():
batch_size = 16 batch_size = 16
device_num = 16 device_num = 16
context.set_auto_parallel_context(device_num=device_num, global_rank=0) context.set_auto_parallel_context(device_num=device_num, global_rank=0)
input = Tensor(np.ones([batch_size, 512, 32, 32]).astype(np.float32) * 0.01) input = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]), dtype=ms.int32) label = Tensor(np.ones([batch_size]), dtype=ms.int32)
net = GradWrap(NetWithLoss(BNReshapeDenseBNNet())) net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
......
...@@ -490,15 +490,15 @@ def fc_with_initialize(input_channels, out_channels): ...@@ -490,15 +490,15 @@ def fc_with_initialize(input_channels, out_channels):
class BNReshapeDenseBNNet(nn.Cell): class BNReshapeDenseBNNet(nn.Cell):
def __init__(self): def __init__(self):
super(BNReshapeDenseBNNet, self).__init__() super(BNReshapeDenseBNNet, self).__init__()
self.batch_norm = bn_with_initialize(512) self.batch_norm = bn_with_initialize(2)
self.reshape = P.Reshape() self.reshape = P.Reshape()
self.cast = P.Cast() self.cast = P.Cast()
self.batch_norm2 = nn.BatchNorm1d(512, affine=False) self.batch_norm2 = nn.BatchNorm1d(512, affine=False)
self.fc = fc_with_initialize(512 * 32 * 32, 512) self.fc = fc_with_initialize(2 * 32 * 32, 512)
def construct(self, x): def construct(self, x):
x = self.batch_norm(x) x = self.batch_norm(x)
x = self.reshape(x, (16, 512*32*32)) x = self.reshape(x, (16, 2*32*32))
x = self.fc(x) x = self.fc(x)
x = self.batch_norm2(x) x = self.batch_norm2(x)
return x return x
...@@ -508,7 +508,7 @@ def test_bn_reshape_dense_bn_train(): ...@@ -508,7 +508,7 @@ def test_bn_reshape_dense_bn_train():
batch_size = 16 batch_size = 16
device_num = 16 device_num = 16
context.set_auto_parallel_context(device_num=device_num, global_rank=0) context.set_auto_parallel_context(device_num=device_num, global_rank=0)
input = Tensor(np.ones([batch_size, 512, 32, 32]).astype(np.float32) * 0.01) input = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01)
net = GradWrap(NetWithLoss(BNReshapeDenseBNNet())) net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
......
...@@ -43,9 +43,9 @@ def get_test_data(step): ...@@ -43,9 +43,9 @@ def get_test_data(step):
tag1 = "xt1[:Tensor]" tag1 = "xt1[:Tensor]"
tag2 = "xt2[:Tensor]" tag2 = "xt2[:Tensor]"
tag3 = "xt3[:Tensor]" tag3 = "xt3[:Tensor]"
np1 = np.random.random((50, 40, 30, 50)) np1 = np.random.random((5, 4, 3, 5))
np2 = np.random.random((50, 50, 30, 50)) np2 = np.random.random((5, 5, 3, 5))
np3 = np.random.random((40, 55, 30, 50)) np3 = np.random.random((4, 5, 3, 5))
dict1 = {} dict1 = {}
dict1["name"] = tag1 dict1["name"] = tag1
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册