提交 e7b7abc5 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1843 fix ScatterAdd ScatterMax and BasicLSTMCell comments error

Merge pull request !1843 from zhaozhenlong/fix-issues-scatter-and-lstm-comments
...@@ -2241,7 +2241,8 @@ class ScatterMax(PrimitiveWithInfer): ...@@ -2241,7 +2241,8 @@ class ScatterMax(PrimitiveWithInfer):
""" """
Update the value of the input tensor through the max operation. Update the value of the input tensor through the max operation.
Using given values to update tensor value through the max operation, along with the input indices,. Using given values to update tensor value through the max operation, along with the input indices.
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
Args: Args:
use_locking (bool): Whether protect the assignment by a lock. Default: True. use_locking (bool): Whether protect the assignment by a lock. Default: True.
...@@ -2253,7 +2254,7 @@ class ScatterMax(PrimitiveWithInfer): ...@@ -2253,7 +2254,7 @@ class ScatterMax(PrimitiveWithInfer):
the data type is same as `input_x`, the shape is `indices_shape + x_shape[1:]`. the data type is same as `input_x`, the shape is `indices_shape + x_shape[1:]`.
Outputs: Outputs:
Tensor, has the same shape and data type as `input_x`. Parameter, the updated `input_x`.
Examples: Examples:
>>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x") >>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x")
...@@ -2286,6 +2287,7 @@ class ScatterAdd(PrimitiveWithInfer): ...@@ -2286,6 +2287,7 @@ class ScatterAdd(PrimitiveWithInfer):
Update the value of the input tensor through the add operation. Update the value of the input tensor through the add operation.
Using given values to update tensor value through the add operation, along with the input indices. Using given values to update tensor value through the add operation, along with the input indices.
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
Args: Args:
use_locking (bool): Whether protect the assignment by a lock. Default: False. use_locking (bool): Whether protect the assignment by a lock. Default: False.
...@@ -2297,7 +2299,7 @@ class ScatterAdd(PrimitiveWithInfer): ...@@ -2297,7 +2299,7 @@ class ScatterAdd(PrimitiveWithInfer):
the data type is same as `input_x`, the shape is `indices_shape + x_shape[1:]`. the data type is same as `input_x`, the shape is `indices_shape + x_shape[1:]`.
Outputs: Outputs:
Tensor, has the same shape and data type as `input_x`. Parameter, the updated `input_x`.
Examples: Examples:
>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x") >>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x")
......
...@@ -3407,12 +3407,12 @@ class BasicLSTMCell(PrimitiveWithInfer): ...@@ -3407,12 +3407,12 @@ class BasicLSTMCell(PrimitiveWithInfer):
Outputs: Outputs:
- **ct** (Tensor) - Forward :math:`c_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`). - **ct** (Tensor) - Forward :math:`c_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **ht** (Tensor) - Cell output. Tensor of shape (`batch_size`, `hidden_size`). - **ht** (Tensor) - Cell output. Tensor of shape (`batch_size`, `hidden_size`).
- **it** (Tensor) - Forward :math:`i_t` cache at moment `t`. Tensor of shape (`batch_size`, `4 x hidden_size`). - **it** (Tensor) - Forward :math:`i_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **jt** (Tensor) - Forward :math:`j_t` cache at moment `t`. Tensor of shape (`batch_size`, `4 x hidden_size`). - **jt** (Tensor) - Forward :math:`j_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **ft** (Tensor) - Forward :math:`f_t` cache at moment `t`. Tensor of shape (`batch_size`, `4 x hidden_size`). - **ft** (Tensor) - Forward :math:`f_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **ot** (Tensor) - Forward :math:`o_t` cache at moment `t`. Tensor of shape (`batch_size`, `4 x hidden_size`). - **ot** (Tensor) - Forward :math:`o_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **tanhct** (Tensor) - Forward :math:`tanh c_t` cache at moment `t`. - **tanhct** (Tensor) - Forward :math:`tanh c_t` cache at moment `t`.
Tensor of shape (`batch_size`, `4 x hidden_size`). Tensor of shape (`batch_size`, `hidden_size`).
Examples: Examples:
'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'), 'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册