提交 e6a12946 编写于 作者: Y YangLuo

Updata voc build() & add C++ Op CreateTupleIterator

上级 b7ebe2be
......@@ -61,11 +61,19 @@ namespace api {
} while (false)
// Function to create the iterator, which will build and launch the execution tree.
std::shared_ptr<Iterator> Dataset::CreateIterator() {
std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> columns) {
std::shared_ptr<Iterator> iter;
try {
auto ds = shared_from_this();
// The specified columns will be selected from the dataset and passed down the pipeline
// in the order specified, other columns will be discarded.
if (!columns.empty()) {
ds = ds->Project(columns);
}
iter = std::make_shared<Iterator>();
Status rc = iter->BuildAndLaunchTree(shared_from_this());
Status rc = iter->BuildAndLaunchTree(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "CreateIterator failed." << rc;
return nullptr;
......@@ -629,13 +637,13 @@ bool VOCDataset::ValidateParams() {
}
Path imagesets_file = dir / "ImageSets" / "Segmentation" / mode_ + ".txt";
if (!imagesets_file.Exists()) {
MS_LOG(ERROR) << "[Segmentation] imagesets_file is invalid or not exist";
MS_LOG(ERROR) << "Invalid mode: " << mode_ << ", file \"" << imagesets_file << "\" is not exists!";
return false;
}
} else if (task_ == "Detection") {
Path imagesets_file = dir / "ImageSets" / "Main" / mode_ + ".txt";
if (!imagesets_file.Exists()) {
MS_LOG(ERROR) << "[Detection] imagesets_file is invalid or not exist.";
MS_LOG(ERROR) << "Invalid mode: " << mode_ << ", file \"" << imagesets_file << "\" is not exists!";
return false;
}
} else {
......@@ -655,18 +663,33 @@ std::vector<std::shared_ptr<DatasetOp>> VOCDataset::Build() {
sampler_ = CreateDefaultSampler();
}
std::shared_ptr<VOCOp::Builder> builder = std::make_shared<VOCOp::Builder>();
(void)builder->SetDir(dataset_dir_);
(void)builder->SetTask(task_);
(void)builder->SetMode(mode_);
(void)builder->SetNumWorkers(num_workers_);
(void)builder->SetSampler(std::move(sampler_->Build()));
(void)builder->SetDecode(decode_);
(void)builder->SetClassIndex(class_index_);
auto schema = std::make_unique<DataSchema>();
VOCOp::TaskType task_type_;
std::shared_ptr<VOCOp> op;
RETURN_EMPTY_IF_ERROR(builder->Build(&op));
node_ops.push_back(op);
if (task_ == "Segmentation") {
task_type_ = VOCOp::TaskType::Segmentation;
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnTarget), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
} else if (task_ == "Detection") {
task_type_ = VOCOp::TaskType::Detection;
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnBbox), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnLabel), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnDifficult), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnTruncate), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
}
std::shared_ptr<VOCOp> voc_op;
voc_op = std::make_shared<VOCOp>(task_type_, mode_, dataset_dir_, class_index_, num_workers_, rows_per_buffer_,
connector_que_size_, decode_, std::move(schema), std::move(sampler_->Build()));
node_ops.push_back(voc_op);
return node_ops;
}
......
......@@ -30,6 +30,19 @@ void Iterator::GetNextRow(TensorMap *row) {
}
}
// Get the next row from the data pipeline.
void Iterator::GetNextRow(TensorVec *row) {
TensorRow tensor_row;
Status rc = iterator_->FetchNextTensorRow(&tensor_row);
if (rc.IsError()) {
MS_LOG(ERROR) << "GetNextRow: Failed to get next row.";
row->clear();
}
// Generate a vector as return
row->clear();
std::copy(tensor_row.begin(), tensor_row.end(), std::back_inserter(*row));
}
// Shut down the data pipeline.
void Iterator::Stop() {
// Releasing the iterator_ unique_ptre. This should trigger the destructor of iterator_.
......
......@@ -116,8 +116,9 @@ std::shared_ptr<RandomColorAdjustOperation> RandomColorAdjust(std::vector<float>
// Function to create RandomCropOperation.
std::shared_ptr<RandomCropOperation> RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding,
bool pad_if_needed, std::vector<uint8_t> fill_value) {
auto op = std::make_shared<RandomCropOperation>(size, padding, pad_if_needed, fill_value);
bool pad_if_needed, std::vector<uint8_t> fill_value,
BorderType padding_mode) {
auto op = std::make_shared<RandomCropOperation>(size, padding, pad_if_needed, fill_value, padding_mode);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
......@@ -403,8 +404,12 @@ std::shared_ptr<TensorOp> RandomColorAdjustOperation::Build() {
// RandomCropOperation
RandomCropOperation::RandomCropOperation(std::vector<int32_t> size, std::vector<int32_t> padding, bool pad_if_needed,
std::vector<uint8_t> fill_value)
: size_(size), padding_(padding), pad_if_needed_(pad_if_needed), fill_value_(fill_value) {}
std::vector<uint8_t> fill_value, BorderType padding_mode)
: size_(size),
padding_(padding),
pad_if_needed_(pad_if_needed),
fill_value_(fill_value),
padding_mode_(padding_mode) {}
bool RandomCropOperation::ValidateParams() {
if (size_.empty() || size_.size() > 2) {
......@@ -443,7 +448,7 @@ std::shared_ptr<TensorOp> RandomCropOperation::Build() {
}
auto tensor_op = std::make_shared<RandomCropOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
BorderType::kConstant, pad_if_needed_, fill_r, fill_g, fill_b);
padding_mode_, pad_if_needed_, fill_r, fill_g, fill_b);
return tensor_op;
}
......
......@@ -196,8 +196,9 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
}
/// \brief Function to create an Iterator over the Dataset pipeline
/// \param[in] columns List of columns to be used to specify the order of columns
/// \return Shared pointer to the Iterator
std::shared_ptr<Iterator> CreateIterator();
std::shared_ptr<Iterator> CreateIterator(std::vector<std::string> columns = {});
/// \brief Function to create a BatchDataset
/// \notes Combines batch_size number of consecutive rows into batches
......@@ -452,6 +453,12 @@ class VOCDataset : public Dataset {
bool ValidateParams() override;
private:
const std::string kColumnImage = "image";
const std::string kColumnTarget = "target";
const std::string kColumnBbox = "bbox";
const std::string kColumnLabel = "label";
const std::string kColumnDifficult = "difficult";
const std::string kColumnTruncate = "truncate";
std::string dataset_dir_;
std::string task_;
std::string mode_;
......
......@@ -37,6 +37,7 @@ namespace api {
class Dataset;
using TensorMap = std::unordered_map<std::string, std::shared_ptr<Tensor>>;
using TensorVec = std::vector<std::shared_ptr<Tensor>>;
// Abstract class for iterating over the dataset.
class Iterator {
......@@ -53,9 +54,15 @@ class Iterator {
Status BuildAndLaunchTree(std::shared_ptr<Dataset> ds);
/// \brief Function to get the next row from the data pipeline.
/// \note Type of return data is a map(with column name).
/// \param[out] row - the output tensor row.
void GetNextRow(TensorMap *row);
/// \brief Function to get the next row from the data pipeline.
/// \note Type of return data is a vector(without column name).
/// \param[out] row - the output tensor row.
void GetNextRow(TensorVec *row);
/// \brief Function to shut down the data pipeline.
void Stop();
......
......@@ -148,8 +148,8 @@ std::shared_ptr<RandomColorAdjustOperation> RandomColorAdjust(std::vector<float>
/// fill R, G, B channels respectively.
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<RandomCropOperation> RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding = {0, 0, 0, 0},
bool pad_if_needed = false,
std::vector<uint8_t> fill_value = {0, 0, 0});
bool pad_if_needed = false, std::vector<uint8_t> fill_value = {0, 0, 0},
BorderType padding_mode = BorderType::kConstant);
/// \brief Function to create a RandomHorizontalFlip TensorOperation.
/// \notes Tensor operation to perform random horizontal flip.
......@@ -311,7 +311,8 @@ class RandomColorAdjustOperation : public TensorOperation {
class RandomCropOperation : public TensorOperation {
public:
RandomCropOperation(std::vector<int32_t> size, std::vector<int32_t> padding = {0, 0, 0, 0},
bool pad_if_needed = false, std::vector<uint8_t> fill_value = {0, 0, 0});
bool pad_if_needed = false, std::vector<uint8_t> fill_value = {0, 0, 0},
BorderType padding_mode = BorderType::kConstant);
~RandomCropOperation() = default;
......@@ -324,6 +325,7 @@ class RandomCropOperation : public TensorOperation {
std::vector<int32_t> padding_;
bool pad_if_needed_;
std::vector<uint8_t> fill_value_;
BorderType padding_mode_;
};
class RandomHorizontalFlipOperation : public TensorOperation {
......
......@@ -95,6 +95,7 @@ SET(DE_UT_SRCS
c_api_dataset_coco_test.cc
c_api_dataset_voc_test.cc
c_api_datasets_test.cc
c_api_dataset_iterator_test.cc
tensor_op_fusion_pass_test.cc
sliding_window_op_test.cc
epoch_ctrl_op_test.cc
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include "utils/log_adapter.h"
#include "utils/ms_utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"
using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
using mindspore::dataset::TensorImpl;
using mindspore::dataset::DataType;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
using mindspore::dataset::dsize_t;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestIteratorOneColumn) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorOneColumn.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// Only select "image" column and drop others
std::vector<std::string> columns = {"image"};
std::shared_ptr<Iterator> iter = ds->CreateIterator(columns);
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::vector<std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
TensorShape expect({2, 28, 28, 1});
uint64_t i = 0;
while (row.size() != 0) {
for (auto &v : row) {
MS_LOG(INFO) << "image shape:" << v->shape();
EXPECT_EQ(expect, v->shape());
}
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestIteratorTwoColumns) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorTwoColumns.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, false, SequentialSampler(0, 4));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// Only select "image" and "bbox" column
std::vector<std::string> columns = {"image", "bbox"};
std::shared_ptr<Iterator> iter = ds->CreateIterator(columns);
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::vector<std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
std::vector<TensorShape> expect = {TensorShape({173673}), TensorShape({1, 4}),
TensorShape({173673}), TensorShape({1, 4}),
TensorShape({147025}), TensorShape({1, 4}),
TensorShape({211653}), TensorShape({1, 4})};
uint64_t i = 0;
uint64_t j = 0;
while (row.size() != 0) {
MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape();
EXPECT_EQ(2, row.size());
EXPECT_EQ(expect[j++], row[0]->shape());
EXPECT_EQ(expect[j++], row[1]->shape());
iter->GetNextRow(&row);
i++;
j = (j == expect.size()) ? 0 : j;
}
EXPECT_EQ(i, 8);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestIteratorEmptyColumn) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorEmptyColumn.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 5));
EXPECT_NE(ds, nullptr);
// Create a Rename operation on ds
ds = ds->Rename({"image", "label"}, {"col1", "col2"});
EXPECT_NE(ds, nullptr);
// No columns are specified, use all columns
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::vector<std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
TensorShape expect0({32, 32, 3});
TensorShape expect1({});
uint64_t i = 0;
while (row.size() != 0) {
MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape();
EXPECT_EQ(expect0, row[0]->shape());
EXPECT_EQ(expect1, row[1]->shape());
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 5);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestIteratorReOrder) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorReOrder.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, SequentialSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Create a Take operation on ds
ds = ds->Take(2);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// Reorder "image" and "label" column
std::vector<std::string> columns = {"label", "image"};
std::shared_ptr<Iterator> iter = ds->CreateIterator(columns);
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::vector<std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
TensorShape expect0({32, 32, 3});
TensorShape expect1({});
// Check if we will catch "label" before "image" in row
std::vector<std::string> expect = {"label", "image"};
uint64_t i = 0;
while (row.size() != 0) {
MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape();
EXPECT_EQ(expect1, row[0]->shape());
EXPECT_EQ(expect0, row[1]->shape());
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestIteratorWrongColumn) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorOneColumn.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Pass wrong column name
std::vector<std::string> columns = {"digital"};
std::shared_ptr<Iterator> iter = ds->CreateIterator(columns);
EXPECT_EQ(iter, nullptr);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册