提交 e509f87f 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!4219 Add Unique CPU kernel

Merge pull request !4219 from huanghui/add-op-unique
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/unique_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void UniqueCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
n_ = input_shape[0];
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
bool UniqueCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
} else if (dtype_ == kNumberTypeInt64) {
LaunchKernel<int64_t>(inputs, outputs);
}
return true;
}
template <typename T>
void UniqueCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto x_addr = reinterpret_cast<T *>(inputs[0]->addr);
auto y_addr = reinterpret_cast<T *>(outputs[0]->addr);
auto idx_addr = reinterpret_cast<int *>(outputs[1]->addr);
std::unordered_map<T, int> uniq;
int n = SizeToInt(n_);
uniq.reserve(n * 2);
for (int i = 0, j = 0; i < n; ++i) {
auto it = uniq.emplace(x_addr[i], j);
idx_addr[i] = it.first->second;
if (it.second) {
++j;
}
}
for (const auto &it : uniq) {
y_addr[it.second] = it.first;
}
}
void UniqueCPUKernel::CheckParam(const CNodePtr &kernel_node) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape.size() != 1) {
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but UniqueCPUKernel only support 1d.";
}
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UniqueCPUKernel needs 1 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 2) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UniqueCPUKernel needs 2 output.";
}
}
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include <unordered_map>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class UniqueCPUKernel : public CPUKernel {
public:
UniqueCPUKernel() = default;
~UniqueCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
size_t n_;
TypeId dtype_;
};
MS_REG_CPU_KERNEL(
Unique, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
UniqueCPUKernel);
MS_REG_CPU_KERNEL(
Unique, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
UniqueCPUKernel);
MS_REG_CPU_KERNEL(
Unique,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32),
UniqueCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.uniq = P.Unique()
def construct(self, x):
return self.uniq(x)
def test_net():
x = Tensor(np.array([1, 2, 5, 2]), mstype.float32)
uniq = Net()
output = uniq(x)
print("x:\n", x)
print("y:\n", output[0])
print("idx:\n", output[1])
expect_y_result = [1., 2., 5.]
expect_idx_result = [0, 1, 2, 1]
assert (output[0].asnumpy() == expect_y_result).all()
assert (output[1].asnumpy() == expect_idx_result).all()
......@@ -128,6 +128,7 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_ftrl_cpu_kernel.cc"
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc"
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc"
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc"
)
if (CMAKE_SYSTEM_NAME MATCHES "Windows")
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "common/common_test.h"
#define private public
#define protected public
#include "backend/kernel_compiler/cpu/unique_cpu_kernel.h"
#undef private
#undef protected
namespace mindspore {
namespace kernel {
class UniqueCpuKernelTest : public UT::Common {
public:
UniqueCpuKernelTest() : unique_(std::make_shared<UniqueCPUKernel>()) {}
void SetUp() override {
unique_->n_ = 9;
unique_->dtype_ = kNumberTypeFloat32;
inputs_.clear();
workspace_.clear();
outputs_.clear();
}
AddressPtr CreateKernelAddress(void *addr) {
auto kernel_addr = std::make_shared<Address>();
kernel_addr->addr = addr;
return kernel_addr;
}
void CreateInputAddress() { inputs_.push_back(CreateKernelAddress(x_.data())); }
void CreateOutputAddress() {
outputs_.push_back(CreateKernelAddress(y_.data()));
outputs_.push_back(CreateKernelAddress(idx_.data()));
}
std::vector<float> x_;
std::vector<float> y_;
std::vector<int> idx_;
std::vector<AddressPtr> inputs_;
std::vector<AddressPtr> workspace_;
std::vector<AddressPtr> outputs_;
std::shared_ptr<UniqueCPUKernel> unique_;
};
TEST_F(UniqueCpuKernelTest, compute_test) {
x_ = {1, 1, 2, 4, 4, 4, 7, 8, 8};
y_ = {1, 1, 1, 1, 1};
idx_ = {1, 1, 1, 1, 1, 1, 1, 1, 1};
CreateInputAddress();
CreateOutputAddress();
unique_->Launch(inputs_, workspace_, outputs_);
// check compute result
std::vector<float> expect_y{1, 2, 4, 7, 8};
std::vector<int> expect_idx{0, 0, 1, 2, 2, 2, 3, 4, 4};
EXPECT_TRUE(y_ == expect_y);
EXPECT_TRUE(idx_ == expect_idx);
}
} // namespace kernel
} // namespace mindspore
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册