提交 e3c053c4 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!4961 Optimize the performance of BatchNorm and FusedBatchNorm, add Fp16 kernel

Merge pull request !4961 from sunsuodong/batch_norm_fp16
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/batchnorm_fp16.h"
#include <math.h>
void BatchNormFp16(const void *input, const void *mean, const void *variance,
BatchNormParameter *param, int task_id, void *output) {
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
int completed_units = task_id * units_per_thread;
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
int cur_offset = completed_units * param->channel_;
for (int i = 0; i < cur_unit; i++) {
for (int c = 0; c < param->channel_; c++) {
float16_t variance_sqrt = sqrt(((const float16_t *)variance)[c] + param->epsilon_);
((float16_t *)output)[cur_offset + c] =
(((const float16_t *)input)[cur_offset + c] - ((const float16_t *)mean)[c]) / variance_sqrt;
}
cur_offset += param->channel_;
}
}
void FusedBatchNormFp16(const void *input, const void *scale, const void *offset, const void *mean,
const void *variance, BatchNormParameter *param, int task_id, void *output) {
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
int completed_units = task_id * units_per_thread;
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
int cur_offset = completed_units * param->channel_;
for (int i = 0; i < cur_unit; i++) {
for (int c = 0; c < param->channel_; c++) {
float16_t variance_sqrt = sqrt(((const float16_t *)variance)[c] + param->epsilon_);
float16_t norm_val = (((const float16_t *)input)[cur_offset + c] - ((const float16_t *)mean)[c]) / variance_sqrt;
((float16_t *)output)[cur_offset + c] = norm_val * ((const float16_t *)scale)[c] + ((const float16_t *)offset)[c];
}
cur_offset += param->channel_;
}
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP16_BATCHNORM_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP16_BATCHNORM_FP16_H_
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#include "nnacl/batchnorm_parameter.h"
#ifdef __cplusplus
extern "C" {
#endif
void BatchNormFp16(const void *input, const void *mean, const void *variance, BatchNormParameter *param, int task_id,
void *output);
void FusedBatchNormFp16(const void *input, const void *scale, const void *offset, const void *mean,
const void *variance, BatchNormParameter *param, int task_id, void *output);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP16_BATCHNORM_FP16_H_
......@@ -15,26 +15,42 @@
*/
#include "nnacl/fp32/batchnorm.h"
#include "nnacl/fp16/batchnorm_fp16.h"
#include <math.h>
#include "nnacl/batchnorm_parameter.h"
#include "nnacl/op_base.h"
#include "nnacl/errorcode.h"
void BatchNorm(float *output_ptr, const float *input_ptr, const float *mean_ptr, const float *variance_ptr, int task_id,
BatchNormParameter *param) {
for (int c = task_id; c < param->channel_; c += param->op_parameter_.thread_num_) {
float variance_sqrt = sqrt(variance_ptr[c] + param->epsilon_);
for (int u = 0; u < param->unit_; u++) {
output_ptr[u * param->channel_ + c] = (input_ptr[u * param->channel_ + c] - mean_ptr[c]) / variance_sqrt;
void BatchNormFp32(const void *input, const void *mean, const void *variance,
BatchNormParameter *param, int task_id, void *output) {
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
int completed_units = task_id * units_per_thread;
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
int cur_offset = completed_units * param->channel_;
for (int i = 0; i < cur_unit; i++) {
for (int c = 0; c < param->channel_; c++) {
float variance_sqrt = sqrt(((const float *)variance)[c] + param->epsilon_);
((float *)output)[cur_offset + c] =
(((const float *)input)[cur_offset + c] - ((const float *)mean)[c]) / variance_sqrt;
}
cur_offset += param->channel_;
}
}
void FusedBatchNorm(float *output_ptr, const float *input_ptr, const float *scale_ptr, const float *offest_ptr,
const float *mean_ptr, const float *variance_ptr, int task_id, BatchNormParameter *param) {
for (int c = task_id; c < param->channel_; c += param->op_parameter_.thread_num_) {
float variance_sqrt = sqrt(variance_ptr[c] + param->epsilon_);
for (int u = 0; u < param->unit_; u++) {
output_ptr[u * param->channel_ + c] =
(input_ptr[u * param->channel_ + c] - mean_ptr[c]) / variance_sqrt * scale_ptr[c] + offest_ptr[c];
void FusedBatchNormFp32(const void *input, const void *scale, const void *offset, const void *mean,
const void *variance, BatchNormParameter *param, int task_id, void *output) {
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
int completed_units = task_id * units_per_thread;
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
int cur_offset = completed_units * param->channel_;
for (int i = 0; i < cur_unit; i++) {
for (int c = 0; c < param->channel_; c++) {
float variance_sqrt = sqrt(((const float *)variance)[c] + param->epsilon_);
float norm_val = (((const float *)input)[cur_offset + c] - ((const float *)mean)[c]) / variance_sqrt;
((float *)output)[cur_offset + c] = norm_val * ((const float *)scale)[c] + ((const float *)offset)[c];
}
cur_offset += param->channel_;
}
}
......@@ -17,18 +17,16 @@
#ifndef MINDSPORE_LITE_NNACL_FP32_BATCHNORM_H_
#define MINDSPORE_LITE_NNACL_FP32_BATCHNORM_H_
#include "nnacl/op_base.h"
#include "nnacl/batchnorm_parameter.h"
#ifdef __cplusplus
extern "C" {
#endif
void BatchNorm(float *output_ptr, const float *input_ptr, const float *mean_ptr, const float *variance_ptr, int task_id,
BatchNormParameter *param);
void FusedBatchNorm(float *output_ptr, const float *input_ptr, const float *scale_ptr, const float *offest_ptr,
const float *mean_ptr, const float *variance_ptr, int task_id, BatchNormParameter *param);
void BatchNormFp32(const void *input, const void *mean, const void *variance, BatchNormParameter *param, int task_id,
void *output);
void FusedBatchNormFp32(const void *input, const void *scale, const void *offset, const void *mean,
const void *variance, BatchNormParameter *param, int task_id, void *output);
#ifdef __cplusplus
}
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp16/batchnorm_fp16.h"
#include "nnacl/fp16/batchnorm_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
#include "src/kernel_registry.h"
using mindspore::lite::KernelRegistrar;
using mindspore::schema::PrimitiveType_BatchNorm;
namespace mindspore::kernel {
int BatchnormFp16CPUKernel::DoExecute(int task_id) {
auto param = reinterpret_cast<BatchNormParameter *>(op_parameter_);
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
auto input = in_tensors_.at(0);
auto mean = in_tensors_.at(1);
auto variance = in_tensors_.at(2);
auto output = out_tensors_.at(0);
auto input_fp16 = context_->allocator->Malloc(input->ElementsNum() * sizeof(float16_t));
auto mean_fp16 = context_->allocator->Malloc(mean->ElementsNum() * sizeof(float16_t));
auto variance_fp16 = context_->allocator->Malloc(variance->ElementsNum() * sizeof(float16_t));
auto output_fp16 = context_->allocator->Malloc(output->ElementsNum() * sizeof(float16_t));
if (input_fp16 == nullptr || mean_fp16 == nullptr || variance_fp16 == nullptr || output_fp16 == nullptr) {
context_->allocator->Free(input_fp16);
context_->allocator->Free(mean_fp16);
context_->allocator->Free(variance_fp16);
context_->allocator->Free(output_fp16);
}
Float32ToFloat16(reinterpret_cast<float *>(input->Data()),
reinterpret_cast<float16_t *>(input_fp16), input->ElementsNum());
Float32ToFloat16(reinterpret_cast<float *>(mean->Data()),
reinterpret_cast<float16_t *>(mean_fp16), mean->ElementsNum());
Float32ToFloat16(reinterpret_cast<float *>(variance->Data()),
reinterpret_cast<float16_t *>(variance_fp16), variance->ElementsNum());
BatchNormFp16(input_fp16, mean_fp16, variance_fp16, param, task_id, output_fp16);
Float16ToFloat32(reinterpret_cast<float16_t *>(output_fp16), reinterpret_cast<float *>(output),
output->ElementsNum());
context_->allocator->Free(input_fp16);
context_->allocator->Free(mean_fp16);
context_->allocator->Free(variance_fp16);
context_->allocator->Free(output_fp16);
return mindspore::lite::RET_OK;
}
BatchNormFp16(in_tensors_.at(0)->Data(), mean_, variance_, param, task_id, out_tensors_.at(0)->Data());
return mindspore::lite::RET_OK;
}
kernel::LiteKernel *CpuBatchnormFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
auto *kernel = new (std::nothrow) BatchnormFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new BatchnormFp16CPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
delete kernel;
return nullptr;
}
return kernel;
}
// REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_BatchNorm, CpuBatchnormFp16KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_BATCHNORM_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_BATCHNORM_FP16_H_
#include <vector>
#include "src/runtime/kernel/arm/fp32/batchnorm.h"
namespace mindspore::kernel {
class BatchnormFp16CPUKernel : public BatchnormCPUKernel {
public:
BatchnormFp16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: BatchnormCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
virtual ~BatchnormFp16CPUKernel() {}
virtual int DoExecute(int task_id);
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_BATCHNORM_FP16_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp16/fused_batchnorm_fp16.h"
#include "nnacl/fp16/batchnorm_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
#include "src/kernel_registry.h"
using mindspore::lite::KernelRegistrar;
using mindspore::schema::PrimitiveType_FusedBatchNorm;
namespace mindspore::kernel {
int FusedBatchnormFp16CPUKernel::DoExecute(int task_id) {
auto param = reinterpret_cast<BatchNormParameter *>(op_parameter_);
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
auto input = in_tensors_.at(0);
auto scale = in_tensors_.at(1);
auto offset = in_tensors_.at(2);
auto mean = in_tensors_.at(3);
auto variance = in_tensors_.at(4);
auto output = out_tensors_.at(0);
auto input_fp16 = context_->allocator->Malloc(input->ElementsNum() * sizeof(float16_t));
auto scale_fp16 = context_->allocator->Malloc(scale->ElementsNum() * sizeof(float16_t));
auto offset_fp16 = context_->allocator->Malloc(offset->ElementsNum() * sizeof(float16_t));
auto mean_fp16 = context_->allocator->Malloc(mean->ElementsNum() * sizeof(float16_t));
auto variance_fp16 = context_->allocator->Malloc(variance->ElementsNum() * sizeof(float16_t));
auto output_fp16 = context_->allocator->Malloc(output->ElementsNum() * sizeof(float16_t));
if (input_fp16 == nullptr || scale_fp16 == nullptr || offset_fp16 == nullptr ||
mean_fp16 == nullptr || variance_fp16 == nullptr || output_fp16 == nullptr) {
context_->allocator->Free(input_fp16);
context_->allocator->Free(scale_fp16);
context_->allocator->Free(offset_fp16);
context_->allocator->Free(mean_fp16);
context_->allocator->Free(variance_fp16);
context_->allocator->Free(output_fp16);
}
Float32ToFloat16(reinterpret_cast<float *>(input->Data()),
reinterpret_cast<float16_t *>(input_fp16), input->ElementsNum());
Float32ToFloat16(reinterpret_cast<float *>(scale->Data()),
reinterpret_cast<float16_t *>(scale_fp16), scale->ElementsNum());
Float32ToFloat16(reinterpret_cast<float *>(offset->Data()),
reinterpret_cast<float16_t *>(offset_fp16), offset->ElementsNum());
Float32ToFloat16(reinterpret_cast<float *>(mean->Data()),
reinterpret_cast<float16_t *>(mean_fp16), mean->ElementsNum());
Float32ToFloat16(reinterpret_cast<float *>(variance->Data()),
reinterpret_cast<float16_t *>(variance_fp16), variance->ElementsNum());
FusedBatchNormFp16(input_fp16, scale_fp16, offset_fp16, mean_fp16, variance_fp16, param, task_id,
output_fp16);
Float16ToFloat32(reinterpret_cast<float16_t *>(output_fp16), reinterpret_cast<float *>(output),
output->ElementsNum());
context_->allocator->Free(input_fp16);
context_->allocator->Free(scale_fp16);
context_->allocator->Free(offset_fp16);
context_->allocator->Free(mean_fp16);
context_->allocator->Free(variance_fp16);
context_->allocator->Free(output_fp16);
return mindspore::lite::RET_OK;
}
FusedBatchNormFp16(in_tensors_.at(0)->Data(), scale_, offset_, mean_, variance_, param, task_id,
out_tensors_.at(0)->Data());
return mindspore::lite::RET_OK;
}
kernel::LiteKernel *CpuFusedBatchnormFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *op_parameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
FusedBatchnormFp16CPUKernel *kernel =
new (std::nothrow) FusedBatchnormFp16CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new FusedBatchnormFp16CPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
return nullptr;
}
return kernel;
}
// REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_FusedBatchNorm, CpuFusedBatchnormFp16KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FUSED_BATCHNORM_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FUSED_BATCHNORM_FP16_H_
#include <vector>
#include "src/runtime/kernel/arm/fp32/fused_batchnorm.h"
namespace mindspore::kernel {
class FusedBatchnormFp16CPUKernel : public FusedBatchnormCPUKernel {
public:
FusedBatchnormFp16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: FusedBatchnormCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
virtual ~FusedBatchnormFp16CPUKernel() {}
virtual int DoExecute(int task_id);
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_FUSED_BATCHNORM_FP16_H_
......@@ -15,50 +15,12 @@
*/
#include "src/runtime/kernel/arm/fp32/batchnorm.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
#include "nnacl/batchnorm_parameter.h"
#include "nnacl/fp32/batchnorm.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_BatchNorm;
namespace mindspore::kernel {
BatchnormCPUKernel::~BatchnormCPUKernel() {
if (mean_addr_ != nullptr) {
free(mean_addr_);
mean_addr_ = nullptr;
}
if (var_addr_ != nullptr) {
free(var_addr_);
var_addr_ = nullptr;
}
}
int BatchnormCPUKernel::InitConstTensor() {
auto mean = in_tensors_[1];
mean_addr_ = reinterpret_cast<float *>(malloc(mean->ElementsNum() * sizeof(float)));
if (mean_addr_ == nullptr) {
MS_LOG(ERROR) << "Malloc buffer failed.";
return RET_ERROR;
}
memcpy(mean_addr_, mean->Data(), mean->ElementsNum() * sizeof(float));
auto variance = in_tensors_[2];
var_addr_ = reinterpret_cast<float *>(malloc(variance->ElementsNum() * sizeof(float)));
if (var_addr_ == nullptr) {
MS_LOG(ERROR) << "Malloc buffer failed.";
return RET_ERROR;
}
memcpy(var_addr_, variance->Data(), variance->ElementsNum() * sizeof(float));
return RET_OK;
}
int BatchnormCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
......@@ -67,62 +29,72 @@ int BatchnormCPUKernel::Init() {
}
int BatchnormCPUKernel::ReSize() {
if (mean_addr_ != nullptr) {
free(mean_addr_);
mean_addr_ = nullptr;
FreeMeanAndVariance();
FillParam();
return InitConstTensor();
}
void BatchnormCPUKernel::FreeMeanAndVariance() {
if (mean_ != nullptr) {
free(mean_);
mean_ = nullptr;
}
if (var_addr_ != nullptr) {
free(var_addr_);
var_addr_ = nullptr;
if (variance_ != nullptr) {
free(variance_);
variance_ = nullptr;
}
}
void BatchnormCPUKernel::FillParam() {
auto input_shapes = in_tensors_[0]->shape();
auto n_dim = input_shapes.size();
batchnorm_param_->channel_ = input_shapes[n_dim - 1];
batchnorm_param_->unit_ = 1;
auto param = reinterpret_cast<BatchNormParameter *>(op_parameter_);
param->channel_ = input_shapes[n_dim - 1];
param->unit_ = 1;
for (size_t i = 0; i < n_dim - 1; i++) {
batchnorm_param_->unit_ *= input_shapes[i];
param->unit_ *= input_shapes[i];
}
batchnorm_param_->op_parameter_.thread_num_ =
MSMIN(batchnorm_param_->op_parameter_.thread_num_, batchnorm_param_->channel_);
}
auto ret = InitConstTensor();
if (ret != 0) {
MS_LOG(ERROR) << "Batchnorm fp32 InitConstTensor failed.";
int BatchnormCPUKernel::InitConstTensor() {
mean_ = malloc(in_tensors_[1]->Size());
variance_ = malloc(in_tensors_[2]->Size());
if (mean_ == nullptr || variance_ == nullptr) {
MS_LOG(ERROR) << "Memory allocation failed";
FreeMeanAndVariance();
return RET_ERROR;
}
memcpy(mean_, in_tensors_[1]->Data(), in_tensors_[1]->Size());
memcpy(variance_, in_tensors_[2]->Data(), in_tensors_[2]->Size());
return RET_OK;
}
int BatchnormCPUKernel::DoExecute(int task_id) {
BatchNorm(out_addr_, in_addr_, mean_addr_, var_addr_, task_id, batchnorm_param_);
return RET_OK;
}
int BatchNormRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto g_kernel = reinterpret_cast<BatchnormCPUKernel *>(cdata);
auto ret = g_kernel->DoExecute(task_id);
int BatchnormCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "BatchnormRun error task_id[" << task_id << "] error_code[" << ret << "]";
MS_LOG(ERROR) << "Prepare fail! Ret error code: " << ret;
return ret;
}
return RET_OK;
ret = LiteBackendParallelLaunch(BatchNormRun, this, op_parameter_->thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "BatchnormRun error error_code[" << ret << "]";
}
return ret;
}
int BatchnormCPUKernel::Run() {
auto prepare_ret = Prepare();
if (prepare_ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail! Ret error code: " << prepare_ret;
return prepare_ret;
}
in_addr_ = reinterpret_cast<float *>(in_tensors_.at(0)->Data());
out_addr_ = reinterpret_cast<float *>(out_tensors_.at(0)->Data());
int BatchnormCPUKernel::DoExecute(int task_id) {
auto param = reinterpret_cast<BatchNormParameter *>(op_parameter_);
BatchNormFp32(in_tensors_.at(0)->Data(), mean_, variance_, param, task_id, out_tensors_.at(0)->Data());
return mindspore::lite::RET_OK;
}
int ret = LiteBackendParallelLaunch(BatchNormRun, this, batchnorm_param_->op_parameter_.thread_num_);
int BatchNormRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto kernel = reinterpret_cast<BatchnormCPUKernel *>(cdata);
auto ret = kernel->DoExecute(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "BatchnormRun error error_code[" << ret << "]";
return ret;
MS_LOG(ERROR) << "BatchnormRun error task_id[" << task_id << "] error_code[" << ret << "]";
}
return RET_OK;
return ret;
}
kernel::LiteKernel *CpuBatchnormKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
......@@ -131,7 +103,6 @@ kernel::LiteKernel *CpuBatchnormKernelCreator(const std::vector<lite::tensor::Te
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_BatchNorm);
auto *kernel = new (std::nothrow) BatchnormCPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new BatchNormCPUKernel fail!";
......
......@@ -22,6 +22,7 @@
#include "include/context.h"
#include "nnacl/fp32/batchnorm.h"
#include "nnacl/batchnorm_parameter.h"
#include "src/runtime/runtime_api.h"
using mindspore::lite::Context;
......@@ -31,24 +32,23 @@ class BatchnormCPUKernel : public LiteKernel {
BatchnormCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
batchnorm_param_ = reinterpret_cast<BatchNormParameter *>(parameter);
}
~BatchnormCPUKernel() override;
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
virtual ~BatchnormCPUKernel() { FreeMeanAndVariance(); }
int Init() override;
int ReSize() override;
int Run() override;
int InitConstTensor();
int DoExecute(int tid);
private:
float *in_addr_ = nullptr;
float *mean_addr_ = nullptr;
float *var_addr_ = nullptr;
float *out_addr_ = nullptr;
BatchNormParameter *batchnorm_param_;
virtual int InitConstTensor();
virtual int DoExecute(int task_id);
protected:
void FillParam();
void FreeMeanAndVariance();
void *mean_ = nullptr;
void *variance_ = nullptr;
};
int BatchNormRun(int task_id, LiteParallelGroupEnv *penv, void *cdata);
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCHNORM_H_
......@@ -15,133 +15,59 @@
*/
#include "src/runtime/kernel/arm/fp32/fused_batchnorm.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
#include "nnacl/batchnorm_parameter.h"
#include "nnacl/fp32/batchnorm.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_FusedBatchNorm;
namespace mindspore::kernel {
FusedBatchnormCPUKernel::~FusedBatchnormCPUKernel() { FreeTmpBuffer(); }
int FusedBatchnormCPUKernel::ReSize() {
FreeMeanAndVariance();
FreeScaleAndOffset();
FillParam();
return InitConstTensor();
}
void FusedBatchnormCPUKernel::FreeTmpBuffer() {
if (scale_addr_ != nullptr) {
free(scale_addr_);
scale_addr_ = nullptr;
}
if (offset_addr_ != nullptr) {
free(offset_addr_);
offset_addr_ = nullptr;
void FusedBatchnormCPUKernel::FreeScaleAndOffset() {
if (scale_ != nullptr) {
free(scale_);
scale_ = nullptr;
}
if (mean_addr_ != nullptr) {
free(mean_addr_);
mean_addr_ = nullptr;
}
if (var_addr_ != nullptr) {
free(var_addr_);
var_addr_ = nullptr;
if (offset_ != nullptr) {
free(offset_);
offset_ = nullptr;
}
}
int FusedBatchnormCPUKernel::InitConstTensor() {
auto scale = in_tensors_[1];
scale_addr_ = reinterpret_cast<float *>(malloc(scale->ElementsNum() * sizeof(float)));
if (scale_addr_ == nullptr) {
MS_LOG(ERROR) << "Malloc buffer failed.";
return RET_ERROR;
}
memcpy(scale_addr_, scale->Data(), scale->ElementsNum() * sizeof(float));
auto offset = in_tensors_[2];
offset_addr_ = reinterpret_cast<float *>(malloc(offset->ElementsNum() * sizeof(float)));
if (offset_addr_ == nullptr) {
MS_LOG(ERROR) << "Malloc buffer failed.";
return RET_ERROR;
}
memcpy(offset_addr_, offset->Data(), offset->ElementsNum() * sizeof(float));
auto mean = in_tensors_[3];
mean_addr_ = reinterpret_cast<float *>(malloc(mean->ElementsNum() * sizeof(float)));
if (mean_addr_ == nullptr) {
MS_LOG(ERROR) << "Malloc buffer failed.";
return RET_ERROR;
}
memcpy(mean_addr_, mean->Data(), mean->ElementsNum() * sizeof(float));
auto variance = in_tensors_[4];
var_addr_ = reinterpret_cast<float *>(malloc(variance->ElementsNum() * sizeof(float)));
if (var_addr_ == nullptr) {
MS_LOG(ERROR) << "Malloc buffer failed.";
return RET_ERROR;
}
memcpy(var_addr_, variance->Data(), variance->ElementsNum() * sizeof(float));
return RET_OK;
}
int FusedBatchnormCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
scale_ = malloc(scale->Size());
offset_ = malloc(offset->Size());
mean_ = malloc(mean->Size());
variance_ = malloc(variance->Size());
int FusedBatchnormCPUKernel::ReSize() {
FreeTmpBuffer();
auto input_shapes = in_tensors_[0]->shape();
auto n_dim = input_shapes.size();
batchnorm_param_->channel_ = input_shapes[n_dim - 1];
batchnorm_param_->unit_ = 1;
for (size_t i = 0; i < n_dim - 1; i++) {
batchnorm_param_->unit_ *= input_shapes[i];
}
batchnorm_param_->op_parameter_.thread_num_ =
MSMIN(batchnorm_param_->op_parameter_.thread_num_, batchnorm_param_->channel_);
auto ret = InitConstTensor();
if (ret != 0) {
MS_LOG(ERROR) << "FusedBatchnorm fp32 InitConstTensor failed.";
if (scale_ == nullptr || offset_ == nullptr || mean_ == nullptr || variance_ == nullptr) {
FreeMeanAndVariance();
FreeScaleAndOffset();
MS_LOG(ERROR) << "Memory allocation failed";
return RET_ERROR;
}
memcpy(scale_, scale->Data(), scale->Size());
memcpy(offset_, offset->Data(), offset->Size());
memcpy(mean_, mean->Data(), mean->Size());
memcpy(variance_, variance->Data(), variance->Size());
return RET_OK;
}
int FusedBatchnormCPUKernel::Execute(int task_id) {
FusedBatchNorm(out_addr_, in_addr_, scale_addr_, offset_addr_, mean_addr_, var_addr_, task_id, batchnorm_param_);
return RET_OK;
}
int FusedBatchNormRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto g_kernel = reinterpret_cast<FusedBatchnormCPUKernel *>(cdata);
auto ret = g_kernel->Execute(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "FusedBatchnormRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int FusedBatchnormCPUKernel::Run() {
auto prepare_ret = Prepare();
if (prepare_ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail! Ret error code: " << prepare_ret;
return prepare_ret;
}
in_addr_ = reinterpret_cast<float *>(in_tensors_.at(0)->Data());
out_addr_ = reinterpret_cast<float *>(out_tensors_.at(0)->Data());
int ret = LiteBackendParallelLaunch(FusedBatchNormRun, this, batchnorm_param_->op_parameter_.thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "FusedBatchnormRun error error_code[" << ret << "]";
return ret;
}
return RET_OK;
int FusedBatchnormCPUKernel::DoExecute(int task_id) {
auto param = reinterpret_cast<BatchNormParameter *>(op_parameter_);
FusedBatchNormFp32(in_tensors_.at(0)->Data(), scale_, offset_, mean_, variance_, param, task_id,
out_tensors_.at(0)->Data());
return mindspore::lite::RET_OK;
}
kernel::LiteKernel *CpuFusedBatchnormKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
......@@ -149,11 +75,6 @@ kernel::LiteKernel *CpuFusedBatchnormKernelCreator(const std::vector<lite::tenso
OpParameter *op_parameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (op_parameter == nullptr) {
MS_LOG(ERROR) << "Input parameter is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_FusedBatchNorm);
FusedBatchnormCPUKernel *kernel =
new (std::nothrow) FusedBatchnormCPUKernel(op_parameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
......
......@@ -18,37 +18,26 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FUSED_BATCHNORM_H_
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/batchnorm_parameter.h"
#include "src/runtime/kernel/arm/fp32/batchnorm.h"
namespace mindspore::kernel {
class FusedBatchnormCPUKernel : public LiteKernel {
class FusedBatchnormCPUKernel : public BatchnormCPUKernel {
public:
FusedBatchnormCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
batchnorm_param_ = reinterpret_cast<BatchNormParameter *>(parameter);
}
~FusedBatchnormCPUKernel() override;
: BatchnormCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~FusedBatchnormCPUKernel() { FreeScaleAndOffset(); }
int Init() override;
int ReSize() override;
int Run() override;
int InitConstTensor();
int Execute(int task_id);
int InitConstTensor() override;
int DoExecute(int task_id) override;
private:
void FreeTmpBuffer();
float *in_addr_ = nullptr;
float *mean_addr_ = nullptr;
float *var_addr_ = nullptr;
float *scale_addr_ = nullptr;
float *offset_addr_ = nullptr;
float *out_addr_ = nullptr;
BatchNormParameter *batchnorm_param_;
protected:
void FreeScaleAndOffset();
void *scale_ = nullptr;
void *offset_ = nullptr;
};
} // namespace mindspore::kernel
......
......@@ -31,40 +31,32 @@ TEST_F(TestBatchnormFp32, BNTest) {
-1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344};
std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514};
std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003};
std::vector<lite::tensor::Tensor *> inputs_tensor;
std::vector<lite::tensor::Tensor *> outputs_tensor;
BatchNormParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm;
op_param.epsilon_ = 0.001f;
std::vector<int> shape = {1, 2, 2, 3};
lite::tensor::Tensor input0_tensor;
lite::tensor::Tensor input1_tensor;
lite::tensor::Tensor input2_tensor;
inputs_tensor.push_back(&input0_tensor);
inputs_tensor.push_back(&input1_tensor);
inputs_tensor.push_back(&input2_tensor);
lite::tensor::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3});
lite::tensor::Tensor input1_tensor(kNumberTypeFloat32, {3});
lite::tensor::Tensor input2_tensor(kNumberTypeFloat32, {3});
input0_tensor.SetData(in_data.data());
input1_tensor.SetData(in_data1.data());
input2_tensor.SetData(in_data2.data());
input0_tensor.set_shape(shape);
input1_tensor.set_shape({3});
input2_tensor.set_shape({3});
std::vector<lite::tensor::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor};
std::vector<float> output(12);
std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324};
lite::tensor::Tensor output0_tensor;
outputs_tensor.push_back(&output0_tensor);
lite::tensor::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3});
output0_tensor.SetData(output.data());
output0_tensor.set_shape(shape);
std::vector<lite::tensor::Tensor *> outputs_tensor = {&output0_tensor};
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_BatchNorm};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
lite::Context ctx;
ctx.thread_num_ = 1;
ctx.thread_num_ = 2;
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
ASSERT_NE(kernel, nullptr);
......@@ -82,7 +74,6 @@ TEST_F(TestBatchnormFp32, BNTest) {
input1_tensor.SetData(nullptr);
input2_tensor.SetData(nullptr);
output0_tensor.SetData(nullptr);
MS_LOG(INFO) << "TestBathNormFp32 accuracy passed";
}
TEST_F(TestBatchnormFp32, FusedBNTest) {
......@@ -92,118 +83,102 @@ TEST_F(TestBatchnormFp32, FusedBNTest) {
std::vector<float> offset = {27.888096, 24.533648, 15.335093};
std::vector<float> mean = {11.5127125, 0.47681615, 5.851508};
std::vector<float> var = {1.270583, 13.005714, 6.089223};
std::vector<lite::tensor::Tensor *> inputs_tensor;
std::vector<lite::tensor::Tensor *> outputs_tensor;
BatchNormParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm;
op_param.epsilon_ = 0.001f;
std::vector<int> shape = {1, 2, 2, 3};
lite::tensor::Tensor input[5];
input[0].SetData(in_data.data());
input[1].SetData(scale.data());
input[2].SetData(offset.data());
input[3].SetData(mean.data());
input[4].SetData(var.data());
input[0].set_shape(shape);
for (int i = 1; i < 5; i++) {
input[i].set_shape({3});
}
for (int i = 0; i < 5; i++) {
inputs_tensor.push_back(&input[i]);
}
lite::tensor::Tensor input0(kNumberTypeFloat32, {1, 2, 2, 3});
lite::tensor::Tensor input1(kNumberTypeFloat32, {3});
lite::tensor::Tensor input2(kNumberTypeFloat32, {3});
lite::tensor::Tensor input3(kNumberTypeFloat32, {3});
lite::tensor::Tensor input4(kNumberTypeFloat32, {3});
input0.SetData(in_data.data());
input1.SetData(scale.data());
input2.SetData(offset.data());
input3.SetData(mean.data());
input4.SetData(var.data());
std::vector<lite::tensor::Tensor *> inputs_tensor = {&input0, &input1, &input2, &input3, &input4};
std::vector<float> output(12);
std::vector<float> corr_out = {-195.5765, 67.03745, -4.243883, -42.028015, 74.37044, 9.075897,
5.1857452, 56.60399, -77.215096, -181.18402, 49.81066, -59.204563};
lite::tensor::Tensor output0_tensor;
outputs_tensor.push_back(&output0_tensor);
output0_tensor.SetData(output.data());
output0_tensor.set_shape(shape);
lite::tensor::Tensor output0(kNumberTypeFloat32, {1, 2, 2, 3});
output0.SetData(output.data());
std::vector<lite::tensor::Tensor *> outputs_tensor = {&output0};
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_FusedBatchNorm};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
lite::Context ctx;
ctx.thread_num_ = 1;
ctx.thread_num_ = 2;
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor.shape();
kernel->Run();
printf("==================output data=================\n");
for (int i = 0; i < output0_tensor.ElementsNum(); i++) {
for (int i = 0; i < output0.ElementsNum(); i++) {
std::cout << output[i] << " ,";
}
std::cout << std::endl;
CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001);
for (int i = 1; i < 5; i++) {
input[i].SetData(nullptr);
}
output0_tensor.SetData(nullptr);
MS_LOG(INFO) << "TestFusedBathNormFp32 accuracy passed";
CompareOutputData(output.data(), corr_out.data(), output0.ElementsNum(), 0.001);
input0.SetData(nullptr);
input1.SetData(nullptr);
input2.SetData(nullptr);
input3.SetData(nullptr);
input4.SetData(nullptr);
output0.SetData(nullptr);
}
TEST_F(TestBatchnormFp32, easyTest) {
std::vector<float> in_data = {1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6};
std::vector<float> in_data1 = {0.1, 0.6};
std::vector<float> in_data2 = {3, 4};
std::vector<lite::tensor::Tensor *> inputs_tensor;
std::vector<lite::tensor::Tensor *> outputs_tensor;
BatchNormParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm;
op_param.epsilon_ = 0.001f;
std::vector<int> shape = {1, 1, 6, 2};
lite::tensor::Tensor input0_tensor;
lite::tensor::Tensor input1_tensor;
lite::tensor::Tensor input2_tensor;
inputs_tensor.push_back(&input0_tensor);
inputs_tensor.push_back(&input1_tensor);
inputs_tensor.push_back(&input2_tensor);
input0_tensor.SetData(in_data.data());
input1_tensor.SetData(in_data1.data());
input2_tensor.SetData(in_data2.data());
input0_tensor.set_shape(shape);
input1_tensor.set_shape({2});
input2_tensor.set_shape({2});
lite::tensor::Tensor input0(kNumberTypeFloat32, {1, 1, 6, 2});
lite::tensor::Tensor input1(kNumberTypeFloat32, {2});
lite::tensor::Tensor input2(kNumberTypeFloat32, {2});
input0.SetData(in_data.data());
input1.SetData(in_data1.data());
input2.SetData(in_data2.data());
std::vector<lite::tensor::Tensor *> inputs_tensor = {&input0, &input1, &input2};
std::vector<float> output(12);
std::vector<float> corr_out = {0.519529, 1.69979, 1.09678, 2.19973, 1.67404, 2.69966,
-0.63498, -2.29971, -1.21223, -2.79965, -1.78949, -3.29959};
lite::tensor::Tensor output0_tensor;
outputs_tensor.push_back(&output0_tensor);
output0_tensor.SetData(output.data());
output0_tensor.set_shape(shape);
lite::tensor::Tensor output0(kNumberTypeFloat32, {1, 1, 6, 2});
output0.SetData(output.data());
std::vector<lite::tensor::Tensor *> outputs_tensor = {&output0};
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_BatchNorm};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
lite::Context ctx;
ctx.thread_num_ = 1;
ctx.thread_num_ = 2;
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor.shape();
kernel->Run();
printf("==================output data=================\n");
for (int i = 0; i < output0_tensor.ElementsNum(); i++) {
for (int i = 0; i < output0.ElementsNum(); i++) {
std::cout << output[i] << " ,";
}
std::cout << std::endl;
CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001);
CompareOutputData(output.data(), corr_out.data(), output0.ElementsNum(), 0.001);
input0_tensor.SetData(nullptr);
input1_tensor.SetData(nullptr);
input2_tensor.SetData(nullptr);
output0_tensor.SetData(nullptr);
MS_LOG(INFO) << "TestBathNormFp32 accuracy passed";
input0.SetData(nullptr);
input1.SetData(nullptr);
input2.SetData(nullptr);
output0.SetData(nullptr);
}
} // namespace mindspore
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册