提交 e1c240f8 编写于 作者: H hexia

serving st time optimization

上级 83bcde40
...@@ -24,7 +24,7 @@ import mindspore.dataset as de ...@@ -24,7 +24,7 @@ import mindspore.dataset as de
from mindspore import Tensor, context from mindspore import Tensor, context
from mindspore import log as logger from mindspore import log as logger
from tests.st.networks.models.bert.src.bert_model import BertModel from tests.st.networks.models.bert.src.bert_model import BertModel
from .generate_model import AddNet, bert_net_cfg from .generate_model import bert_net_cfg
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
...@@ -32,32 +32,6 @@ random.seed(1) ...@@ -32,32 +32,6 @@ random.seed(1)
np.random.seed(1) np.random.seed(1)
de.config.set_seed(1) de.config.set_seed(1)
def test_add():
channel = grpc.insecure_channel('localhost:5500')
stub = ms_service_pb2_grpc.MSServiceStub(channel)
request = ms_service_pb2.PredictRequest()
x = request.data.add()
x.tensor_shape.dims.extend([4])
x.tensor_type = ms_service_pb2.MS_FLOAT32
x.data = (np.ones([4]).astype(np.float32)).tobytes()
y = request.data.add()
y.tensor_shape.dims.extend([4])
y.tensor_type = ms_service_pb2.MS_FLOAT32
y.data = (np.ones([4]).astype(np.float32)).tobytes()
result = stub.Predict(request)
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
print("ms client received: ")
print(result_np)
net = AddNet()
net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32)))
print("add net out: ")
print(net_out)
assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
def test_bert(): def test_bert():
MAX_MESSAGE_LENGTH = 0x7fffffff MAX_MESSAGE_LENGTH = 0x7fffffff
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
......
...@@ -15,11 +15,9 @@ ...@@ -15,11 +15,9 @@
import random import random
import numpy as np import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
import mindspore.dataset as de import mindspore.dataset as de
from mindspore import Tensor, context from mindspore import Tensor, context
from mindspore.ops import operations as P
from mindspore.train.serialization import export from mindspore.train.serialization import export
from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig
...@@ -50,20 +48,6 @@ random.seed(1) ...@@ -50,20 +48,6 @@ random.seed(1)
np.random.seed(1) np.random.seed(1)
de.config.set_seed(1) de.config.set_seed(1)
class AddNet(nn.Cell):
def __init__(self):
super(AddNet, self).__init__()
self.add = P.TensorAdd()
def construct(self, x_, y_):
return self.add(x_, y_)
def export_add_model():
net = AddNet()
x = np.ones(4).astype(np.float32)
y = np.ones(4).astype(np.float32)
export(net, Tensor(x), Tensor(y), file_name='add.mindir', file_format='MINDIR')
def export_bert_model(): def export_bert_model():
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
segment_ids = np.zeros((2, 32), dtype=np.int32) segment_ids = np.zeros((2, 32), dtype=np.int32)
...@@ -73,5 +57,4 @@ def export_bert_model(): ...@@ -73,5 +57,4 @@ def export_bert_model():
file_name='bert.mindir', file_format='MINDIR') file_name='bert.mindir', file_format='MINDIR')
if __name__ == '__main__': if __name__ == '__main__':
export_add_model()
export_bert_model() export_bert_model()
...@@ -41,7 +41,7 @@ prepare_model() ...@@ -41,7 +41,7 @@ prepare_model()
python3 generate_model.py &> generate_model_serving.log python3 generate_model.py &> generate_model_serving.log
echo "### end to generate mode for serving test ###" echo "### end to generate mode for serving test ###"
result=`ls -l | grep -E '*mindir' | grep -v ".log" | wc -l` result=`ls -l | grep -E '*mindir' | grep -v ".log" | wc -l`
if [ ${result} -ne 2 ] if [ ${result} -ne 1 ]
then then
cat generate_model_serving.log cat generate_model_serving.log
echo "### generate model for serving test failed ###" && exit 1 echo "### generate model for serving test failed ###" && exit 1
...@@ -98,13 +98,6 @@ pytest_serving() ...@@ -98,13 +98,6 @@ pytest_serving()
echo "### $1 client end ###" echo "### $1 client end ###"
} }
test_add_model()
{
start_service 5500 add.mindir ${ENV_DEVICE_ID}
pytest_serving test_add
clean_pid
}
test_bert_model() test_bert_model()
{ {
start_service 5500 bert.mindir ${ENV_DEVICE_ID} start_service 5500 bert.mindir ${ENV_DEVICE_ID}
...@@ -115,5 +108,4 @@ test_bert_model() ...@@ -115,5 +108,4 @@ test_bert_model()
echo "-----serving start-----" echo "-----serving start-----"
rm -rf ms_serving *.log *.mindir *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta rm -rf ms_serving *.log *.mindir *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta
prepare_model prepare_model
test_add_model
test_bert_model test_bert_model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册