提交 e0d14446 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!3949 support pretrain for maskrcnn

Merge pull request !3949 from meixiaowei/master
...@@ -35,7 +35,7 @@ MaskRcnn is a two-stage target detection network,This network uses a region prop ...@@ -35,7 +35,7 @@ MaskRcnn is a two-stage target detection network,This network uses a region prop
└─train2017 └─train2017
``` ```
Notice that the coco2017 dataset will be converted to MindRecord which is a data format in MindSpore. The dataset conversion may take about 4 hours.
2. If your own dataset is used. **Select dataset to other when run script.** 2. If your own dataset is used. **Select dataset to other when run script.**
Organize the dataset infomation into a TXT file, each row in the file is as follows: Organize the dataset infomation into a TXT file, each row in the file is as follows:
......
...@@ -134,6 +134,7 @@ config = ed({ ...@@ -134,6 +134,7 @@ config = ed({
"loss_scale": 1, "loss_scale": 1,
"momentum": 0.91, "momentum": 0.91,
"weight_decay": 1e-4, "weight_decay": 1e-4,
"pretrain_epoch_size": 0,
"epoch_size": 12, "epoch_size": 12,
"save_checkpoint": True, "save_checkpoint": True,
"save_checkpoint_epochs": 1, "save_checkpoint_epochs": 1,
......
...@@ -25,7 +25,7 @@ def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps): ...@@ -25,7 +25,7 @@ def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps):
learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr
return learning_rate return learning_rate
def dynamic_lr(config, rank_size=1): def dynamic_lr(config, rank_size=1, start_steps=0):
"""dynamic learning rate generator""" """dynamic learning rate generator"""
base_lr = config.base_lr base_lr = config.base_lr
...@@ -38,5 +38,5 @@ def dynamic_lr(config, rank_size=1): ...@@ -38,5 +38,5 @@ def dynamic_lr(config, rank_size=1):
lr.append(linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * config.warmup_ratio)) lr.append(linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * config.warmup_ratio))
else: else:
lr.append(a_cosine_learning_rate(i, base_lr, warmup_steps, total_steps)) lr.append(a_cosine_learning_rate(i, base_lr, warmup_steps, total_steps))
learning_rate = lr[start_steps:]
return lr return learning_rate
...@@ -108,13 +108,15 @@ if __name__ == '__main__': ...@@ -108,13 +108,15 @@ if __name__ == '__main__':
load_path = args_opt.pre_trained load_path = args_opt.pre_trained
if load_path != "": if load_path != "":
param_dict = load_checkpoint(load_path) param_dict = load_checkpoint(load_path)
for item in list(param_dict.keys()): if config.pretrain_epoch_size == 0:
if not (item.startswith('backbone') or item.startswith('rcnn_mask')): for item in list(param_dict.keys()):
param_dict.pop(item) if not (item.startswith('backbone') or item.startswith('rcnn_mask')):
param_dict.pop(item)
load_param_into_net(net, param_dict) load_param_into_net(net, param_dict)
loss = LossNet() loss = LossNet()
lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32) lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size),
mstype.float32)
opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
weight_decay=config.weight_decay, loss_scale=config.loss_scale) weight_decay=config.weight_decay, loss_scale=config.loss_scale)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册