Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
e0b8302a
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e0b8302a
编写于
9月 01, 2020
作者:
H
hanhuifeng2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
improve performance for yolov3_darknet53 and update performance data to readme
上级
57215ef0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
36 addition
and
36 deletion
+36
-36
model_zoo/official/cv/yolov3_darknet53/README.md
model_zoo/official/cv/yolov3_darknet53/README.md
+28
-28
model_zoo/official/cv/yolov3_darknet53/train.py
model_zoo/official/cv/yolov3_darknet53/train.py
+8
-8
未找到文件。
model_zoo/official/cv/yolov3_darknet53/README.md
浏览文件 @
e0b8302a
...
...
@@ -302,38 +302,38 @@ The above python command will run in the background. You can view the results th
### Evaluation Performance
| Parameters | YOLO |
| -------------------------- | ----------------------------------------------------------- |
| Model Version | YOLOv3 |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G |
| uploaded Date | 06/31/2020 (month/day/year) |
| MindSpore Version | 0.5.0-alpha |
| Dataset | COCO2014 |
| Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 |
| Optimizer | Momentum |
| Loss Function | Sigmoid Cross Entropy with logits |
| outputs | boxes and label |
| Loss | 34 |
| Speed | 1pc: 350 ms/step; |
| Total time | 8pc: 25 hours |
| Parameters (M) | 62.1 |
| Checkpoint for Fine tuning | 474M (.ckpt file) |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 |
| Parameters | YOLO |
YOLO |
| -------------------------- | ----------------------------------------------------------- |
----------------------------------------------------------- |
| Model Version | YOLOv3 |
YOLOv3 |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G |
NV SMX2 V100-16G; CPU 2.10GHz, 96cores; Memory, 251G |
| uploaded Date | 06/31/2020 (month/day/year) |
09/02/2020 (month/day/year) |
| MindSpore Version | 0.5.0-alpha |
0.7.0 |
| Dataset | COCO2014 |
COCO2014 |
| Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 |
epoch=320, batch_size=32, lr=0.001, momentum=0.9 |
| Optimizer | Momentum |
Momentum |
| Loss Function | Sigmoid Cross Entropy with logits |
Sigmoid Cross Entropy with logits |
| outputs | boxes and label |
boxes and label |
| Loss | 34 |
34 |
| Speed | 1pc: 350 ms/step; |
1pc: 600 ms/step; |
| Total time | 8pc: 25 hours |
8pc: 18 hours(shape=416) |
| Parameters (M) | 62.1 |
62.1 |
| Checkpoint for Fine tuning | 474M (.ckpt file) |
474M (.ckpt file) |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 |
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 |
### Inference Performance
| Parameters | YOLO |
| ------------------- | --------------------------- |
| Model Version | YOLOv3 |
| Resource | Ascend 910 |
| Uploaded Date | 06/31/2020 (month/day/year) |
| MindSpore Version | 0.5.0-alpha |
| Dataset | COCO2014, 40,504 images |
| batch_size | 1 |
| outputs | mAP |
| Accuracy | 8pcs: 31.1% |
| Model for inference | 474M (.ckpt file) |
| Parameters | YOLO |
YOLO |
| ------------------- | --------------------------- |
------------------------------|
| Model Version | YOLOv3 |
YOLOv3 |
| Resource | Ascend 910 |
NV SMX2 V100-16G |
| Uploaded Date | 06/31/2020 (month/day/year) |
08/20/2020 (month/day/year) |
| MindSpore Version | 0.5.0-alpha |
0.7.0 |
| Dataset | COCO2014, 40,504 images |
COCO2014, 40,504 images |
| batch_size | 1 |
1 |
| outputs | mAP |
mAP |
| Accuracy | 8pcs: 31.1% |
8pcs: 29.7%~30.3% (shape=416)|
| Model for inference | 474M (.ckpt file) |
474M (.ckpt file) |
# [Description of Random Situation](#contents)
...
...
model_zoo/official/cv/yolov3_darknet53/train.py
浏览文件 @
e0b8302a
...
...
@@ -304,14 +304,14 @@ def train():
input_shape
=
images
.
shape
[
2
:
4
]
args
.
logger
.
info
(
'iter[{}], shape{}'
.
format
(
i
,
input_shape
[
0
]))
images
=
Tensor
(
images
)
batch_y_true_0
=
Tensor
(
data
[
'bbox1'
])
batch_y_true_1
=
Tensor
(
data
[
'bbox2'
])
batch_y_true_2
=
Tensor
(
data
[
'bbox3'
])
batch_gt_box0
=
Tensor
(
data
[
'gt_box1'
])
batch_gt_box1
=
Tensor
(
data
[
'gt_box2'
])
batch_gt_box2
=
Tensor
(
data
[
'gt_box3'
])
images
=
Tensor
.
from_numpy
(
images
)
batch_y_true_0
=
Tensor
.
from_numpy
(
data
[
'bbox1'
])
batch_y_true_1
=
Tensor
.
from_numpy
(
data
[
'bbox2'
])
batch_y_true_2
=
Tensor
.
from_numpy
(
data
[
'bbox3'
])
batch_gt_box0
=
Tensor
.
from_numpy
(
data
[
'gt_box1'
])
batch_gt_box1
=
Tensor
.
from_numpy
(
data
[
'gt_box2'
])
batch_gt_box2
=
Tensor
.
from_numpy
(
data
[
'gt_box3'
])
input_shape
=
Tensor
(
tuple
(
input_shape
[::
-
1
]),
ms
.
float32
)
loss
=
network
(
images
,
batch_y_true_0
,
batch_y_true_1
,
batch_y_true_2
,
batch_gt_box0
,
batch_gt_box1
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录