提交 decc8404 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!795 [pylint] clean pylint warning

Merge pull request !795 from jinyaohui/clean_pylint_0428
...@@ -61,6 +61,7 @@ class Vgg(nn.Cell): ...@@ -61,6 +61,7 @@ class Vgg(nn.Cell):
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1): def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
super(Vgg, self).__init__() super(Vgg, self).__init__()
_ = batch_size
self.layers = _make_layer(base, batch_norm=batch_norm) self.layers = _make_layer(base, batch_norm=batch_norm)
self.flatten = nn.Flatten() self.flatten = nn.Flatten()
self.classifier = nn.SequentialCell([ self.classifier = nn.SequentialCell([
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
# ============================================================================ # ============================================================================
"""FTRL""" """FTRL"""
from mindspore.ops import functional as F, composite as C, operations as P from mindspore.ops import functional as F, composite as C, operations as P
from mindspore.common.parameter import Parameter
from mindspore.common import Tensor from mindspore.common import Tensor
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore._checkparam import Validator as validator from mindspore._checkparam import Validator as validator
......
...@@ -110,8 +110,8 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para ...@@ -110,8 +110,8 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
def _check_param_value(decay_steps, warmup_steps, start_learning_rate, def _check_param_value(decay_steps, warmup_steps, start_learning_rate,
end_learning_rate, power, beta1, beta2, eps, weight_decay, prim_name): end_learning_rate, power, beta1, beta2, eps, weight_decay, prim_name):
"""Check the type of inputs.""" """Check the type of inputs."""
_ = warmup_steps
validator.check_float_positive('start_learning_rate', start_learning_rate, prim_name) validator.check_float_positive('start_learning_rate', start_learning_rate, prim_name)
validator.check_float_legal_value('start_learning_rate', start_learning_rate, prim_name) validator.check_float_legal_value('start_learning_rate', start_learning_rate, prim_name)
validator.check_float_positive('end_learning_rate', end_learning_rate, prim_name) validator.check_float_positive('end_learning_rate', end_learning_rate, prim_name)
......
...@@ -173,8 +173,8 @@ test_sets = [ ...@@ -173,8 +173,8 @@ test_sets = [
embedding_size=768, embedding_size=768,
embedding_shape=[1, 128, 768], embedding_shape=[1, 128, 768],
use_one_hot_embeddings=True, use_one_hot_embeddings=True,
initializer_range=0.02), 1, 1), { initializer_range=0.02), 1, 1),
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}), {'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
'desc_inputs': [input_ids], 'desc_inputs': [input_ids],
'desc_bprop': [[128]]}), 'desc_bprop': [[128]]}),
('EmbeddingLookup_multi_outputs_init_param', { ('EmbeddingLookup_multi_outputs_init_param', {
...@@ -182,8 +182,8 @@ test_sets = [ ...@@ -182,8 +182,8 @@ test_sets = [
embedding_size=768, embedding_size=768,
embedding_shape=[1, 128, 768], embedding_shape=[1, 128, 768],
use_one_hot_embeddings=False, use_one_hot_embeddings=False,
initializer_range=0.02), { initializer_range=0.02),
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}), {'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
'desc_inputs': [input_ids], 'desc_inputs': [input_ids],
'desc_bprop': [[1, 128, 768], [128]]}), 'desc_bprop': [[1, 128, 768], [128]]}),
('EmbeddingLookup_multi_outputs_grad_with_no_sens', { ('EmbeddingLookup_multi_outputs_grad_with_no_sens', {
...@@ -191,8 +191,8 @@ test_sets = [ ...@@ -191,8 +191,8 @@ test_sets = [
embedding_size=768, embedding_size=768,
embedding_shape=[1, 128, 768], embedding_shape=[1, 128, 768],
use_one_hot_embeddings=False, use_one_hot_embeddings=False,
initializer_range=0.02), { initializer_range=0.02),
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}), {'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
'desc_inputs': [input_ids]}), 'desc_inputs': [input_ids]}),
('GetMaskedLMOutput_grad_with_no_sens', { ('GetMaskedLMOutput_grad_with_no_sens', {
'block': GetMaskedLMOutput(BertConfig(batch_size=1)), 'block': GetMaskedLMOutput(BertConfig(batch_size=1)),
......
...@@ -69,6 +69,7 @@ class IthOutputCell(nn.Cell): ...@@ -69,6 +69,7 @@ class IthOutputCell(nn.Cell):
return predict return predict
def get_output_cell(network, num_input, output_index, training=True): def get_output_cell(network, num_input, output_index, training=True):
_ = num_input
net = IthOutputCell(network, output_index) net = IthOutputCell(network, output_index)
set_block_training(net, training) set_block_training(net, training)
return net return net
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册