Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
de21dbda
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
de21dbda
编写于
6月 04, 2020
作者:
W
wangnan39@huawei.com
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ops SparseApplyAdam and SparseApplyLazyAdam
上级
72fd4178
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
307 addition
and
3 deletion
+307
-3
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+3
-1
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+272
-2
tests/ut/python/nn/optim/test_adam.py
tests/ut/python/nn/optim/test_adam.py
+32
-0
未找到文件。
mindspore/ops/operations/__init__.py
浏览文件 @
de21dbda
...
...
@@ -52,7 +52,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2
Sin
,
Sqrt
,
Rsqrt
,
BesselI0e
,
BesselI1e
,
Square
,
Sub
,
TensorAdd
,
Sign
,
Round
,
SquareSumAll
,
Atan
,
Atanh
)
from
.random_ops
import
(
RandomChoiceWithMask
)
from
.nn_ops
import
(
LSTM
,
SGD
,
Adam
,
ApplyMomentum
,
BatchNorm
,
from
.nn_ops
import
(
LSTM
,
SGD
,
Adam
,
SparseApplyAdam
,
SparseApplyLazyAdam
,
ApplyMomentum
,
BatchNorm
,
BiasAdd
,
Conv2D
,
DepthwiseConv2dNative
,
DropoutDoMask
,
DropoutGrad
,
Dropout
,
...
...
@@ -101,6 +101,8 @@ __all__ = [
'MaxPool'
,
'TopK'
,
'Adam'
,
'SparseApplyAdam'
,
'SparseApplyLazyAdam'
,
'Softplus'
,
'Softmax'
,
'LogSoftmax'
,
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
de21dbda
...
...
@@ -2646,9 +2646,25 @@ class Adam(PrimitiveWithInfer):
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
Please refer to the usage in nn.Adam.
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.apply_adam = P.Adam()
>>> self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
>>> self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m")
>>> self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v")
>>> def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
>>> out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
>>> epsilon, grad)
>>> return out
>>> net = Net()
>>> gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
>>> result = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
"""
@
prim_attr_register
def
__init__
(
self
,
use_locking
=
False
,
use_nesterov
=
False
):
validator
.
check_value_type
(
"use_locking"
,
use_locking
,
[
bool
],
self
.
name
)
...
...
@@ -2672,6 +2688,260 @@ class Adam(PrimitiveWithInfer):
return
var_dtype
,
m_dtype
,
v_dtype
class
SparseApplyAdam
(
PrimitiveWithInfer
):
r
"""
Merge the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam)
algorithm. This operator is used when the gradient is sparse.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect updating variable tensors.
If True, updating of the var, m, and v tensors will be protected by a lock.
If False, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
Inputs:
- **var** (Parameter) - Parameters to be updated.
- **m** (Parameter) - The 1st moment vector in the updating formula. Has the same type as `var`.
- **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients,
has the same type as `var`.
- **beta1_power** (float) - :math:`beta_1^t` in the updating formula.
- **beta2_power** (float) - :math:`beta_2^t` in the updating formula.
- **lr** (float) - :math:`l` in the updating formula.
- **beta1** (float) - The exponential decay rate for the 1st moment estimates.
- **beta2** (float) - The exponential decay rate for the 2nd moment estimates.
- **epsilon** (float) - Term added to the denominator to improve numerical stability.
- **gradient** (Tensor) - Gradient value.
- **indices** (Tensor) - Gradient indices. With int32 data type.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> import mindspore.common.dtype as mstype
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.sparse_apply_adam = P.SparseApplyAdam()
>>> self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
>>> self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m")
>>> self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v")
>>> def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
>>> out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
>>> epsilon, grad, indices)
>>> return out
>>> net = Net()
>>> gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
>>> indices = Tensor([0, 1, 2], mstype.int32)
>>> result = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices)
"""
__mindspore_signature__
=
(
(
'var'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'm'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'v'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta1_power'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta2_power'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'lr'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta1'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta2'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'epsilon'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'grad'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'indices'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T1
)
)
@
prim_attr_register
def
__init__
(
self
,
use_locking
=
False
,
use_nesterov
=
False
):
validator
.
check_value_type
(
"use_locking"
,
use_locking
,
[
bool
],
self
.
name
)
validator
.
check_value_type
(
"use_nesterov"
,
use_nesterov
,
[
bool
],
self
.
name
)
self
.
init_prim_io_names
(
inputs
=
[
'var'
,
'm'
,
'v'
,
'beta1_power'
,
'beta2_power'
,
'lr'
,
'beta1'
,
'beta2'
,
'epsilon'
,
'grad'
,
'indices'
],
outputs
=
[
'var'
,
'm'
,
'v'
])
def
infer_shape
(
self
,
var_shape
,
m_shape
,
v_shape
,
beta1_power_shape
,
beta2_power_shape
,
lr_shape
,
beta1_shape
,
beta2_shape
,
epsilon_shape
,
grad_shape
,
indices_shape
):
validator
.
check
(
"var_shape"
,
var_shape
,
"m_shape"
,
m_shape
,
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
"var_shape"
,
var_shape
,
"v_shape"
,
v_shape
,
Rel
.
EQ
,
self
.
name
)
validator
.
check_integer
(
"indices rank"
,
len
(
indices_shape
),
1
,
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
'grad_shape[0]'
,
grad_shape
[
0
],
'indices_shape[0]'
,
indices_shape
[
0
],
Rel
.
EQ
,
self
.
name
)
if
len
(
var_shape
)
>
1
and
grad_shape
!=
indices_shape
+
var_shape
[
1
:]:
raise
ValueError
(
f
"For '
{
self
.
name
}
', the shape of updates should be [] or "
f
"grad_shape = indices_shape + var_shape[1:], but got var_shape:
{
var_shape
}
, "
f
"indices_shape:
{
indices_shape
}
, grad_shape:
{
grad_shape
}
."
)
return
var_shape
,
m_shape
,
v_shape
def
infer_dtype
(
self
,
var_dtype
,
m_dtype
,
v_dtype
,
beta1_power_dtype
,
beta2_power_dtype
,
lr_dtype
,
beta1_dtype
,
beta2_dtype
,
epsilon_dtype
,
grad_dtype
,
indices_dtype
):
args
=
{
"var"
:
var_dtype
,
"m"
:
m_dtype
,
"v"
:
v_dtype
,
"grad"
:
grad_dtype
}
validator
.
check_tensor_type_same
(
args
,
mstype
.
number_type
,
self
.
name
)
args
=
{
"beta1_power"
:
beta1_power_dtype
,
"beta2_power"
:
beta2_power_dtype
,
'lr'
:
lr_dtype
,
"beta1"
:
beta1_dtype
,
"beta2"
:
beta2_dtype
,
"epsilon"
:
epsilon_dtype
}
validator
.
check_scalar_or_tensor_type_same
(
args
,
[
mstype
.
float16
,
mstype
.
float32
],
self
.
name
,
True
)
validator
.
check_tensor_type_same
({
"indices_dtype"
:
indices_dtype
},
[
mstype
.
int32
],
self
.
name
)
return
var_dtype
,
m_dtype
,
v_dtype
class
SparseApplyLazyAdam
(
PrimitiveWithInfer
):
r
"""
Merge the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam)
algorithm. This operator is used when the gradient is sparse. The behavior is not equivalent to the
original Adam algorithm, as only the current indices parameters will be updated.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect updating variable tensors.
If True, updating of the var, m, and v tensors will be protected by a lock.
If False, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
Inputs:
- **var** (Parameter) - Weights to be updated.
- **m** (Parameter) - The 1st moment vector in the updating formula. Has the same type as `var`.
- **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients,
has the same type as `var`.
- **beta1_power** (float) - :math:`beta_1^t` in the updating formula.
- **beta2_power** (float) - :math:`beta_2^t` in the updating formula.
- **lr** (float) - :math:`l` in the updating formula.
- **beta1** (float) - The exponential decay rate for the 1st moment estimates.
- **beta2** (float) - The exponential decay rate for the 2nd moment estimates.
- **epsilon** (float) - Term added to the denominator to improve numerical stability.
- **gradient** (Tensor) - Gradient value.
- **indices** (Tensor) - Gradient indices. With int32 data type.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> import mindspore.common.dtype as mstype
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.sparse_apply_lazyadam = P.SparseApplyLazyAdam()
>>> self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
>>> self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m")
>>> self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v")
>>> def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
>>> out = self.sparse_apply_lazyadam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1,
>>> beta2, epsilon, grad, indices)
>>> return out
>>> net = Net()
>>> gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
>>> indices = Tensor([0, 1, 2], mstype.int32)
>>> result = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices)
"""
__mindspore_signature__
=
(
(
'var'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'm'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'v'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta1_power'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta2_power'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'lr'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta1'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'beta2'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'epsilon'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'grad'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'indices'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T1
)
)
@
prim_attr_register
def
__init__
(
self
,
use_locking
=
False
,
use_nesterov
=
False
):
validator
.
check_value_type
(
"use_locking"
,
use_locking
,
[
bool
],
self
.
name
)
validator
.
check_value_type
(
"use_nesterov"
,
use_nesterov
,
[
bool
],
self
.
name
)
self
.
init_prim_io_names
(
inputs
=
[
'var'
,
'm'
,
'v'
,
'beta1_power'
,
'beta2_power'
,
'lr'
,
'beta1'
,
'beta2'
,
'epsilon'
,
'grad'
,
'indices'
],
outputs
=
[
'var'
,
'm'
,
'v'
])
def
infer_shape
(
self
,
var_shape
,
m_shape
,
v_shape
,
beta1_power_shape
,
beta2_power_shape
,
lr_shape
,
beta1_shape
,
beta2_shape
,
epsilon_shape
,
grad_shape
,
indices_shape
):
validator
.
check
(
"var_shape"
,
var_shape
,
"m_shape"
,
m_shape
,
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
"var_shape"
,
var_shape
,
"v_shape"
,
v_shape
,
Rel
.
EQ
,
self
.
name
)
validator
.
check_integer
(
"indices rank"
,
len
(
indices_shape
),
1
,
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
'grad_shape[0]'
,
grad_shape
[
0
],
'indices_shape[0]'
,
indices_shape
[
0
],
Rel
.
EQ
,
self
.
name
)
if
len
(
var_shape
)
>
1
and
grad_shape
!=
indices_shape
+
var_shape
[
1
:]:
raise
ValueError
(
f
"For '
{
self
.
name
}
', the shape of updates should be [] or "
f
"grad_shape = indices_shape + var_shape[1:], but got var_shape:
{
var_shape
}
, "
f
"indices_shape:
{
indices_shape
}
, grad_shape:
{
grad_shape
}
."
)
return
var_shape
,
m_shape
,
v_shape
def
infer_dtype
(
self
,
var_dtype
,
m_dtype
,
v_dtype
,
beta1_power_dtype
,
beta2_power_dtype
,
lr_dtype
,
beta1_dtype
,
beta2_dtype
,
epsilon_dtype
,
grad_dtype
,
indices_dtype
):
args
=
{
"var"
:
var_dtype
,
"m"
:
m_dtype
,
"v"
:
v_dtype
,
"grad"
:
grad_dtype
}
validator
.
check_tensor_type_same
(
args
,
mstype
.
number_type
,
self
.
name
)
args
=
{
"beta1_power"
:
beta1_power_dtype
,
"beta2_power"
:
beta2_power_dtype
,
'lr'
:
lr_dtype
,
"beta1"
:
beta1_dtype
,
"beta2"
:
beta2_dtype
,
"epsilon"
:
epsilon_dtype
}
validator
.
check_scalar_or_tensor_type_same
(
args
,
[
mstype
.
float16
,
mstype
.
float32
],
self
.
name
,
True
)
validator
.
check_tensor_type_same
({
"indices_dtype"
:
indices_dtype
},
[
mstype
.
int32
],
self
.
name
)
return
var_dtype
,
m_dtype
,
v_dtype
class
BinaryCrossEntropy
(
PrimitiveWithInfer
):
r
"""
Computes the Binary Cross Entropy between the target and the output.
...
...
tests/ut/python/nn/optim/test_adam.py
浏览文件 @
de21dbda
...
...
@@ -18,6 +18,7 @@ import pytest
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
,
Parameter
import
mindspore.common.dtype
as
mstype
from
mindspore.common.api
import
_executor
from
mindspore.nn
import
TrainOneStepCell
,
WithLossCell
from
mindspore.nn.optim
import
AdamWeightDecay
,
AdamWeightDecayDynamicLR
...
...
@@ -108,3 +109,34 @@ def test_adam_mindspore_flatten():
net
=
nn
.
Flatten
()
with
pytest
.
raises
(
ValueError
,
match
=
r
"Optimizer got an empty parameter list"
):
AdamWeightDecay
(
net
.
get_parameters
())
class
TestSparseOps
(
nn
.
Cell
):
"""Define sparse operator"""
def
__init__
(
self
,
sparse_opt
):
super
(
TestSparseOps
,
self
).
__init__
()
self
.
sparse_apply_adam
=
sparse_opt
self
.
var
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"var"
)
self
.
m
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"m"
)
self
.
v
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"v"
)
def
construct
(
self
,
beta1_power
,
beta2_power
,
lr
,
beta1
,
beta2
,
epsilon
,
grad
,
indices
):
out
=
self
.
sparse_apply_adam
(
self
.
var
,
self
.
m
,
self
.
v
,
beta1_power
,
beta2_power
,
lr
,
beta1
,
beta2
,
epsilon
,
grad
,
indices
)
return
out
def
test_sparse_adam
():
"""test sparse operator"""
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
net
=
TestSparseOps
(
P
.
SparseApplyAdam
())
_executor
.
compile
(
net
,
0.9
,
0.999
,
0.001
,
0.9
,
0.999
,
1e-8
,
gradient
,
indices
)
def
test_sparse_lazy_adam
():
"""test sparse operator"""
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
net
=
TestSparseOps
(
P
.
SparseApplyLazyAdam
())
_executor
.
compile
(
net
,
0.9
,
0.999
,
0.001
,
0.9
,
0.999
,
1e-8
,
gradient
,
indices
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录