提交 da8d04e8 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!5237 Enbale ub fusion of Matmul+ConfusionTransposeD

Merge pull request !5237 from huanghui/ub-fusion-matmul-confusion-transpose
......@@ -81,6 +81,7 @@
#include "backend/optimizer/ascend/buffer_fusion/conv_single_in_fusion_pass.h"
#include "backend/optimizer/ascend/buffer_fusion/conv_double_in_fusion_pass.h"
#include "backend/optimizer/ascend/buffer_fusion/matmul_eltwise_fusion_pass.h"
#include "backend/optimizer/ascend/buffer_fusion/matmul_confusiontranspose_fusion_pass.h"
#include "backend/optimizer/ascend/buffer_fusion/depthwiseconv_eltwise_fusion_pass.h"
#include "backend/optimizer/ascend/buffer_fusion/bnupdate_eltwise_fusion_pass.h"
#include "backend/optimizer/ascend/buffer_fusion/bnupdate_eltwise_eltwise_fusion_pass.h"
......@@ -504,6 +505,7 @@ void AscendBackendUBFusionOptimization(const std::shared_ptr<session::KernelGrap
ub_fusion_pm->AddPass(std::make_shared<MultiOutputFusionPass>(fusion_id_allocator));
ub_fusion_pm->AddPass(std::make_shared<EltwiseFusionPass>(fusion_id_allocator));
ub_fusion_pm->AddPass(std::make_shared<DepthwiseConvEltwiseFusionPass>(fusion_id_allocator));
ub_fusion_pm->AddPass(std::make_shared<MatmulConfusionTranposeFusionPass>(fusion_id_allocator));
ub_fusion_pm->AddPass(std::make_shared<UbPatternFusion>());
optimizer->AddPassManager(ub_fusion_pm);
(void)optimizer->Optimize(kernel_graph);
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(save_graphs=True)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.matmul = P.MatMul()
self.transpose = P.Transpose()
self.reshape = P.Reshape()
self.bias_add = P.BiasAdd()
def construct(self, x, y, z):
res = self.matmul(x, y)
res = self.bias_add(res, z)
res = self.reshape(res, (24, 512, 16, 64))
res = self.transpose(res, (0, 2, 1, 3))
return res
def test_net():
x = Tensor(np.ones(shape=[12288, 1024]), mindspore.float16)
y = Tensor(np.ones(shape=[1024, 1024]), mindspore.float16)
z = Tensor(np.ones(shape=[1024]), mindspore.float16)
net = Net()
output = net(x, y, z)
print("result", output.asnumpy())
if __name__ == "__main__":
test_net()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册