Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
da478820
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
da478820
编写于
5月 22, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 22, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1333 fixed erfc
Merge pull request !1333 from jiangjinsheng/vm_erfc
上级
bd426b34
6cd71c1b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
6 addition
and
6 deletion
+6
-6
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+1
-0
mindspore/ops/operations/control_ops.py
mindspore/ops/operations/control_ops.py
+3
-4
mindspore/ops/operations/math_ops.py
mindspore/ops/operations/math_ops.py
+2
-2
未找到文件。
mindspore/ops/operations/__init__.py
浏览文件 @
da478820
...
@@ -142,6 +142,7 @@ __all__ = [
...
@@ -142,6 +142,7 @@ __all__ = [
'ReLUV2'
,
'ReLUV2'
,
'Elu'
,
'Elu'
,
'Erf'
,
'Erf'
,
'Erfc'
,
'Sigmoid'
,
'Sigmoid'
,
'HSwish'
,
'HSwish'
,
'HSigmoid'
,
'HSigmoid'
,
...
...
mindspore/ops/operations/control_ops.py
浏览文件 @
da478820
...
@@ -84,7 +84,7 @@ class GeSwitch(PrimitiveWithInfer):
...
@@ -84,7 +84,7 @@ class GeSwitch(PrimitiveWithInfer):
the true branch will be activated, or vise verse.
the true branch will be activated, or vise verse.
Inputs:
Inputs:
- **data** (
Tensor
) - The data to be used for switch control.
- **data** (
Union[Tensor, Number]
) - The data to be used for switch control.
- **pred** (Tensor) - It should be a scalar whose type is bool and shape is `()`, It is used as condition for
- **pred** (Tensor) - It should be a scalar whose type is bool and shape is `()`, It is used as condition for
switch control.
switch control.
Outputs:
Outputs:
...
@@ -144,7 +144,7 @@ class Merge(PrimitiveWithInfer):
...
@@ -144,7 +144,7 @@ class Merge(PrimitiveWithInfer):
One and only one of the inputs should be selected as the output
One and only one of the inputs should be selected as the output
Inputs:
Inputs:
- **inputs** (Tuple) - The data to be merged.
- **inputs** (Tuple) - The data to be merged.
All tuple elements should have same data type.
Outputs:
Outputs:
tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element.
tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element.
...
@@ -171,6 +171,5 @@ class Merge(PrimitiveWithInfer):
...
@@ -171,6 +171,5 @@ class Merge(PrimitiveWithInfer):
for
i
,
item
in
enumerate
(
inputs
):
for
i
,
item
in
enumerate
(
inputs
):
args
[
'inputs[%d]'
%
i
]
=
item
args
[
'inputs[%d]'
%
i
]
=
item
validator
.
check_tensor_type_same
(
validator
.
check_scalar_or_tensor_type_same
(
args
,
(
mstype
.
bool_
,)
+
mstype
.
number_type
,
self
.
name
)
args
,
(
mstype
.
bool_
,)
+
mstype
.
number_type
,
self
.
name
)
return
(
inputs
[
0
],
mstype
.
int32
)
return
(
inputs
[
0
],
mstype
.
int32
)
mindspore/ops/operations/math_ops.py
浏览文件 @
da478820
...
@@ -1397,14 +1397,14 @@ class EqualCount(PrimitiveWithInfer):
...
@@ -1397,14 +1397,14 @@ class EqualCount(PrimitiveWithInfer):
"""
"""
Computes the number of the same elements of two tensors.
Computes the number of the same elements of two tensors.
The two input tensors should have same shape.
The two input tensors should have same shape
and same data type
.
Inputs:
Inputs:
- **input_x** (Tensor) - The first input tensor.
- **input_x** (Tensor) - The first input tensor.
- **input_y** (Tensor) - The second input tensor.
- **input_y** (Tensor) - The second input tensor.
Outputs:
Outputs:
Tensor, with the type
as `mindspore.int32`
and size as (1,).
Tensor, with the type
same as input tensor
and size as (1,).
Examples:
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录