Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
d9f4549d
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9f4549d
编写于
6月 22, 2020
作者:
Q
qianlong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add comment for dataset.text
上级
beb436f4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
46 addition
and
12 deletion
+46
-12
mindspore/dataset/text/__init__.py
mindspore/dataset/text/__init__.py
+4
-2
mindspore/dataset/text/transforms.py
mindspore/dataset/text/transforms.py
+33
-5
mindspore/dataset/text/utils.py
mindspore/dataset/text/utils.py
+9
-5
未找到文件。
mindspore/dataset/text/__init__.py
浏览文件 @
d9f4549d
...
...
@@ -11,9 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mindspore.dataset.text
This module is to support text processing for nlp. It includes two parts:
transforms and utils. transforms is a high performance
nlp text processing module which is developed with icu4c and cppjieba.
utils provides some general methods for nlp text processing.
"""
import
platform
from
.transforms
import
Lookup
,
JiebaTokenizer
,
UnicodeCharTokenizer
,
Ngram
,
WordpieceTokenizer
,
TruncateSequencePair
,
\
...
...
mindspore/dataset/text/transforms.py
浏览文件 @
d9f4549d
...
...
@@ -12,9 +12,37 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
c transforms for all text related operators
The module text.transforms is inheritted from _c_dataengine
which is implemented basing on icu4c and cppjieba in C++.
It's a high performance module to process nlp text.
Users can use Vocab to build their own dictionary,
use appropriate tokenizers to split sentences into different tokens,
and use Lookup to find the index of tokens in Vocab.
.. Note::
Constructor's arguments for every class in this module must be saved into the
class attributes (self.xxx) to support save() and load().
Examples:
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.text as text
>>> dataset_file = "path/to/text_file_path"
>>> # sentences as line data saved in a file
>>> dataset = ds.TextFileDataset(dataset_file, shuffle=False)
>>> # tokenize sentence to unicode characters
>>> tokenizer = text.UnicodeCharTokenizer()
>>> # load vocabulary form list
>>> vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
>>> # lookup is an operation for mapping tokens to ids
>>> lookup = text.Lookup(vocab)
>>> dataset = dataset.map(operations=[tokenizer, lookup])
>>> for i in dataset.create_dict_iterator():
>>> print(i)
>>> # if text line in dataset_file is:
>>> # 深圳欢迎您
>>> # then the output will be:
>>> # {'text': array([0, 1, 2, 3, 4], dtype=int32)}
"""
import
os
import
re
import
platform
...
...
@@ -203,8 +231,8 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp):
Args:
vocab (Vocab): a Vocab object.
suffix_indicator (str, optional): Used to show that the subword is the last part of a word(default
'##').
max_bytes_per_token (int, optional): Tokens exceeding this length will not be further split(default
100).
suffix_indicator (str, optional): Used to show that the subword is the last part of a word(default
=
'##').
max_bytes_per_token (int, optional): Tokens exceeding this length will not be further split(default
=
100).
unknown_token (str, optional): When we can not found the token: if 'unknown_token' is empty string,
return the token directly, else return 'unknown_token'(default='[UNK]').
"""
...
...
@@ -299,7 +327,7 @@ if platform.system().lower() != 'windows':
The original string will be split by matched elements.
keep_delim_pattern(str, optional): The string matched by 'delim_pattern' can be kept as a token
if it can be matched by 'keep_delim_pattern'. And the default value is empty str(''),
in this situation, delimiters will not kept as a output token.
in this situation, delimiters will not kept as a output token
(default='')
.
"""
def
__init__
(
self
,
delim_pattern
,
keep_delim_pattern
=
''
):
...
...
mindspore/dataset/text/utils.py
浏览文件 @
d9f4549d
...
...
@@ -12,7 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Some basic function for text
The module text.utils provides some general methods for nlp text processing.
For example, you can use Vocab to build a dictionary,
use to_bytes and to_str to encode and decode strings into a specified format.
"""
from
enum
import
IntEnum
...
...
@@ -52,12 +54,12 @@ class Vocab(cde.Vocab):
min_frequency/max_frequency can be None, which corresponds to 0/total_words separately
(default=None, all words are included).
top_k(int, optional): top_k > 0. Number of words to be built into vocab. top_k most frequent words are
taken. top_k is taken after freq_range. If not enough top_k, all words will be taken
.
(default=None,
taken. top_k is taken after freq_range. If not enough top_k, all words will be taken (default=None,
all words are included).
special_tokens(list, optional): a list of strings, each one is a special token. for example
special_tokens=["<pad>","<unk>"] (default=None, no special tokens will be added).
special_first(bool, optional): whether special_tokens will be prepended/appended to vocab. If special_tokens
is specified and special_first is set to None, special_tokens will be prepended
.
(default=None).
is specified and special_first is set to None, special_tokens will be prepended (default=None).
Returns:
Vocab, Vocab object built from dataset.
...
...
@@ -81,7 +83,7 @@ class Vocab(cde.Vocab):
special_tokens(list, optional): a list of strings, each one is a special token. for example
special_tokens=["<pad>","<unk>"] (default=None, no special tokens will be added).
special_first(bool, optional): whether special_tokens will be prepended/appended to vocab, If special_tokens
is specified and special_first is set to None, special_tokens will be prepended
.
(default=None).
is specified and special_first is set to None, special_tokens will be prepended (default=None).
"""
return
super
().
from_list
(
word_list
,
special_tokens
,
special_first
)
...
...
@@ -101,7 +103,7 @@ class Vocab(cde.Vocab):
special_tokens=["<pad>","<unk>"] (default=None, no special tokens will be added).
special_first (bool, optional): whether special_tokens will be prepended/appended to vocab,
If special_tokens is specified and special_first is set to None,
special_tokens will be prepended
.
(default=None).
special_tokens will be prepended (default=None).
"""
return
super
().
from_file
(
file_path
,
delimiter
,
vocab_size
,
special_tokens
,
special_first
)
...
...
@@ -157,12 +159,14 @@ def to_bytes(array, encoding='utf8'):
class
JiebaMode
(
IntEnum
):
"""An enumeration for JiebaTokenizer, effective enumeration types are MIX, MP, HMM."""
MIX
=
0
MP
=
1
HMM
=
2
class
NormalizeForm
(
IntEnum
):
"""An enumeration for NormalizeUTF8, effective enumeration types are NONE, NFC, NFKC, NFD, NFKD."""
NONE
=
0
NFC
=
1
NFKC
=
2
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录