提交 d54154a1 编写于 作者: W wilfChen

Gpu support ctcloss kernel

上级 622b97f3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/nn/ctcloss_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(CTCLossV2,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
CtcLossGpuKernel, float)
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_CTCLOSS_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_CTCLOSS_GPU_KERNEL_H_
#include <cuda_runtime_api.h>
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "device/gpu/gpu_memory_allocator.h"
namespace mindspore {
namespace kernel {
template <typename T>
class CtcLossGpuKernel : public GpuKernel {
public:
CtcLossGpuKernel()
: cudnn_handle_(nullptr),
probs_desc_(nullptr),
ctcloss_desc_(nullptr),
label_size_(0),
input_lengths_size_(0),
label_lengths_size_(0) {}
~CtcLossGpuKernel() override { DestroyResource(); }
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
float *probs = GetDeviceAddress<float>(inputs, 0);
int *labels = GetDeviceAddress<int>(inputs, 1);
int *input_lengths = GetDeviceAddress<int>(inputs, 2);
int *label_lengths = GetDeviceAddress<int>(inputs, 3);
float *costs = GetDeviceAddress<float>(outputs, 0);
float *grads = GetDeviceAddress<float>(outputs, 1);
// Copy labels/input_lengths/label_length to host as cudnn7.x.x requires
void *labels_host = nullptr;
void *input_lengths_host = nullptr;
void *label_lengths_host = nullptr;
CHECK_CUDA_RET_WITH_EXCEPT(cudaMallocHost(&labels_host, inputs[1]->size), "cudaMallocHost failed.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaMallocHost(&input_lengths_host, inputs[2]->size), "cudaMallocHost failed.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaMallocHost(&label_lengths_host, inputs[3]->size), "cudaMallocHost failed.");
cudaStream_t stream = reinterpret_cast<cudaStream_t>(stream_ptr);
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(labels_host, labels, inputs[1]->size, cudaMemcpyDeviceToHost, stream),
"cudaMemcpyAsync failed.");
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(input_lengths_host, input_lengths, inputs[2]->size, cudaMemcpyDeviceToHost, stream),
"cudaMemcpyAsync failed.");
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(label_lengths_host, label_lengths, inputs[3]->size, cudaMemcpyDeviceToHost, stream),
"cudaMemcpyAsync failed.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaStreamSynchronize(stream), "cudaStreamSynchronize failed.");
size_t workspace_size = 0;
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetCTCLossWorkspaceSize(cudnn_handle_, probs_desc_, probs_desc_, reinterpret_cast<int *>(labels_host),
reinterpret_cast<int *>(label_lengths_host),
reinterpret_cast<int *>(input_lengths_host), CUDNN_CTC_LOSS_ALGO_DETERMINISTIC,
ctcloss_desc_, &workspace_size),
"cudnnGetCTCLossWorkspaceSize failed.");
void *workspace = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(workspace_size);
if (workspace == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc workspace, size: " << workspace_size;
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnCTCLoss(cudnn_handle_, probs_desc_, probs, reinterpret_cast<int *>(labels_host),
reinterpret_cast<int *>(label_lengths_host), reinterpret_cast<int *>(input_lengths_host), costs,
probs_desc_, grads, CUDNN_CTC_LOSS_ALGO_DETERMINISTIC, ctcloss_desc_, workspace, workspace_size),
"cudnnCtcLoss failed.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaStreamSynchronize(stream), "cudaStreamSynchronize failed.");
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(workspace);
CHECK_CUDA_RET_WITH_EXCEPT(cudaFreeHost(label_lengths_host), "cudaFreeHost failed.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaFreeHost(input_lengths_host), "cudaFreeHost failed.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaFreeHost(labels_host), "cudaFreeHost failed.");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
InitResource();
auto probs_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (probs_shape.size() != 3) {
MS_LOG(EXCEPTION) << "probs dims: " << probs_shape.size() << " not support.";
}
probs_dims_[0] = probs_shape[0];
probs_dims_[1] = probs_shape[1];
probs_dims_[2] = probs_shape[2];
auto labels_dims = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
if (labels_dims.size() != 1 && labels_dims.size() != 2) {
MS_LOG(EXCEPTION) << "labels dims: " << labels_dims.size() << " not support.";
}
label_size_ = sizeof(int);
for (auto i : labels_dims) {
label_size_ *= i;
}
auto input_length_dims = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
input_lengths_size_ = input_length_dims[0] * sizeof(int);
auto label_length_dims = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3);
label_lengths_size_ = label_length_dims[0] * sizeof(int);
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensorNdDescriptorEx(probs_desc_, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 3, probs_dims_),
"cudnnSetTensorNdDescriptorEx failed.");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetCTCLossDescriptorEx(ctcloss_desc_, CUDNN_DATA_FLOAT,
CUDNN_LOSS_NORMALIZATION_SOFTMAX, CUDNN_PROPAGATE_NAN),
"cudnnSetCTCLossDescriptorEx failed.");
InitSizeLists();
return true;
}
protected:
void InitResource() override {
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&probs_desc_), "cudnnCreateTensorDescriptor failed.");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateCTCLossDescriptor(&ctcloss_desc_), "cudnnCreateCTCLossDescriptor failed.");
}
void InitSizeLists() override {
input_size_list_.push_back(probs_dims_[0] * probs_dims_[1] * probs_dims_[2] * sizeof(float));
input_size_list_.push_back(label_size_);
input_size_list_.push_back(input_lengths_size_);
input_size_list_.push_back(label_lengths_size_);
output_size_list_.push_back(probs_dims_[1] * sizeof(float));
output_size_list_.push_back(probs_dims_[0] * probs_dims_[1] * probs_dims_[2] * sizeof(float));
}
private:
void DestroyResource() noexcept {
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyCTCLossDescriptor(ctcloss_desc_), "cudnnDestroyCTCLossDescriptor failed.");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(probs_desc_), "cudnnDestroyTensorDescriptor failed.");
}
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
cudnnHandle_t cudnn_handle_;
cudnnTensorDescriptor_t probs_desc_;
cudnnCTCLossDescriptor_t ctcloss_desc_;
int probs_dims_[3] = {0};
int label_size_;
int input_lengths_size_;
int label_lengths_size_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_CTCLOSS_GPU_KERNEL_H_
......@@ -47,6 +47,5 @@ MS_REG_GPU_KERNEL_ONE(FusedAdam,
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
FusedAdamWeightDecayGpuKernel, float)
} // namespace kernel
} // namespace mindspore
......@@ -701,6 +701,19 @@ def get_bprop_ctc_loss(self):
return bprop
@bprop_getters.register(P.CTCLossV2)
def get_bprop_ctc_loss_v2(self):
"""Grad definition for `CTCLossV2` operation"""
expand = P.ExpandDims()
def bprop(inputs, labels, input_lengths, labels_lengths, out, dout):
grad_loss = out[1]
grad = grad_loss * expand(dout[0], -1)
return grad, zeros_like(labels), zeros_like(input_lengths), zeros_like(labels_lengths)
return bprop
@bprop_getters.register(P.BasicLSTMCell)
def get_bprop_basic_lstm_cell(self):
"""Grad definition for `BasicLSTMCell` operation."""
......
......@@ -61,7 +61,7 @@ from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, Appl
DropoutDoMask, DropoutGrad, Dropout,
DropoutGenMask, Flatten, FusedBatchNorm, BNTrainingReduce, BNTrainingUpdate,
Gelu, Elu,
GetNext, L2Normalize, LayerNorm, L2Loss, CTCLoss,
GetNext, L2Normalize, LayerNorm, L2Loss, CTCLoss, CTCLossV2,
LogSoftmax,
MaxPool, DataFormatDimMap,
AvgPool, Conv2DBackpropInput, ConfusionMulGrad,
......
......@@ -4765,3 +4765,56 @@ class LRN(PrimitiveWithInfer):
def infer_shape(self, x_shape):
return x_shape
class CTCLossV2(PrimitiveWithInfer):
r"""
Calculates the CTC(Connectionist Temporal Classification) loss. Also calculates the gradient.
Note:
- Cudnn Uses label value of for the `blank`
Inputs:
- **inputs** (Tensor) - The input Tensor should be a `3-D` tensor whose shape is
:math:`(max_time, batch_size, num_class)`. `num_class` should be `num_labels + 1` classes, `num_labels`
indicates the number of actual labels. Blank labels are reserved.
- **labels** (Tensor) - The labels Tensor should be a `1-D` tensor whose shape is
:math:`(\sigma{label_lengths})`
or `2-D` tensor whose shape is
:math:`(max_time, max{label_lengths})`
The type must be int32.
- **input_lengths** (Tensor) - A `1-D` input tensor whose shape is
:math:`(batch_size,)`. The values should be batch. The type must be int32.
- **label_lengths** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch_size)`.
The type must be int32. Each value in the tensor should not greater than `max_time`.
Outputs:
- **loss** (Tensor) - A tensor containing log-probabilities, the shape is :math:`(batch_size)`. Has the same
type with `inputs`.
- **gradient** (Tensor) - The gradient of `loss`. Has the same type and shape with `inputs`.
Examples:
>>> inputs = Tensor(np.random.random((2, 2, 3)), mindspore.float32)
>>> labels = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32)
>>> input_lengths = Tensor(np.array([3, 3, 3]), mindspore.int32)
>>> label_lengths = Tensor(np.array([3, 3, 3]), mindspore.int32)
>>> ctc_loss = P.CTCLossV2()
>>> output = ctc_loss(inputs, labels, input_lengths, label_lengths)
"""
@prim_attr_register
def __init__(self):
pass
def infer_dtype(self, input_dtype, labels_dtype, input_lengths_dtype, label_lengths_dtype):
validator.check_tensor_type_same({"input": input_dtype}, (mstype.float32,), self.name)
validator.check_tensor_type_same({"labels": labels_dtype}, (mstype.int32,), self.name)
validator.check_tensor_type_same({"input_lengths": input_lengths_dtype}, (mstype.int32,), self.name)
validator.check_tensor_type_same({"target_lengths": label_lengths_dtype}, (mstype.int32,), self.name)
return mstype.float32, mstype.float32
def infer_shape(self, input_shape, labels_shape, input_lengths_shape, label_lengths_shape):
validator.check_integer("input shape", len(input_shape), 3, Rel.EQ, self.name)
validator.check_number_range("labels shape", len(labels_shape), 1, 2, Rel.INC_BOTH, self.name)
validator.check_integer("input lengths shape", len(input_lengths_shape), 1, Rel.EQ, self.name)
validator.check_integer("label lengths shape", len(label_lengths_shape), 1, Rel.EQ, self.name)
validator.check_integer("input[1]", input_shape[1], input_lengths_shape[0], Rel.EQ, self.name)
validator.check_integer("input[1]", input_shape[1], label_lengths_shape[0], Rel.EQ, self.name)
return (input_shape[1],), input_shape
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
from mindspore.ops.composite import GradOperation
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.loss = P.CTCLossV2()
self.div = P.RealDiv()
self.cast = P.Cast()
self.mean = P.ReduceMean()
def construct(self, probs, label, input_length, label_length):
x, _ = self.loss(probs, label, input_length, label_length)
x = self.div(x, self.cast(label_length, mstype.float32))
x = self.mean(x)
return x
class GradData(nn.Cell):
def __init__(self, network):
super(GradData, self).__init__()
self.grad = GradOperation(name="get_all", get_all=True, sens_param=False)
self.network = network
def construct(self, probs, labels, input_lengths, label_lengths):
return self.grad(self.network)(probs, labels, input_lengths, label_lengths)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_ctcloss():
probs = Tensor([[[-4.4131, -4.6093, -3.4333, -3.9268, -2.8917, -3.4093, -4.2243, -1.1379, -7.1046, -0.6902],
[-2.5109, -3.3397, -4.9384, -1.2723, -1.1443, -2.4683, -2.6768, -4.1282, -2.7062, -3.1906],
[-2.5092, -1.6392, -2.0864, -4.0059, -1.5610, -2.3223, -2.4816, -2.9922, -3.1412, -2.3311]],
[[-2.1243, -3.5773, -3.1108, -4.4253, -2.7080, -1.9653, -2.0499, -2.4418, -1.8620, -1.5229],
[-2.2479, -3.5128, -1.4189, -2.8701, -1.8562, -2.2752, -2.7019, -2.1865, -2.5634, -2.9869],
[-3.2144, -1.3986, -3.1083, -3.9634, -3.5131, -3.2317, -2.6200, -1.7938, -1.8159, -1.7255]],
[[-3.1301, -2.1649, -0.9286, -2.9452, -2.5992, -2.0263, -2.9201, -3.2155, -2.8302, -3.3636],
[-1.4661, -3.6311, -2.4781, -4.6180, -2.7308, -1.7019, -1.5570, -2.6012, -4.0788, -2.3073],
[-2.6833, -1.5033, -3.6922, -2.6360, -2.6974, -2.6847, -2.7579, -2.1396, -1.4093, -2.9630]],
[[-2.0094, -2.3024, -3.3673, -1.0220, -2.8326, -2.2613, -3.0535, -2.9879, -3.7015, -2.4510],
[-1.9071, -3.2603, -2.3229, -2.0572, -4.3450, -2.1284, -2.6306, -1.3824, -2.9815, -2.5061],
[-2.7931, -3.7631, -3.2440, -4.3887, -1.0271, -3.8851, -1.2418, -4.5123, -2.2993, -2.4607]],
[[-1.5763, -2.7539, -3.6941, -3.8166, -1.2599, -2.6903, -2.5826, -4.8208, -2.9562, -1.6321],
[-3.3031, -3.0087, -1.9982, -1.9081, -3.8731, -2.8764, -2.2485, -2.3808, -1.4283, -2.1625],
[-2.4516, -3.2394, -4.2053, -4.3541, -2.5229, -4.0717, -1.4894, -2.3151, -1.1098, -2.3465]]],
dtype=mstype.float32)
labels = Tensor([9, 4, 6, 4, 7, 1, 4, 6, 6, 8], dtype=mstype.int32)
input_lengths = Tensor([5, 5, 5], dtype=mstype.int32)
label_lengths = Tensor([3, 3, 4], dtype=mstype.int32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = Net()
ctc_loss = net(probs, labels, input_lengths, label_lengths)
expect_loss = [2.4099]
assert np.allclose(ctc_loss.asnumpy(), expect_loss)
grad = GradData(net)(probs, labels, input_lengths, label_lengths)
expect_grad = [[[8.8442e-05, 1.1065e-03, 3.5867e-03, 2.1896e-03, 6.1646e-03,
3.6738e-03, 1.6262e-03, 3.5610e-02, 9.1258e-05, -5.4134e-02],
[-3.7523e-03, 3.9386e-03, 7.9623e-04, 3.1132e-02, -6.2954e-02,
9.4143e-03, 7.6425e-03, 1.7902e-03, 7.4211e-03, 4.5719e-03],
[6.7778e-03, 1.6178e-02, 1.0344e-02, 1.5173e-03, -6.5840e-02,
8.1707e-03, 6.9674e-03, 4.1814e-03, 3.6026e-03, 8.0991e-03]],
[[-1.2581e-02, 3.1057e-03, 4.9517e-03, 1.3301e-03, -2.6320e-02,
1.5568e-02, 1.4305e-02, 9.6671e-03, 1.7262e-02, -2.7292e-02],
[-1.5566e-02, 3.3126e-03, 2.6887e-02, 6.2993e-03, -3.9716e-02,
1.1420e-02, 7.4531e-03, -1.4252e-02, 8.5603e-03, 5.6048e-03],
[3.3483e-03, 2.0579e-02, 3.7231e-03, 1.5832e-03, 2.4837e-03,
3.2909e-03, -7.7267e-02, 1.3861e-02, 1.3558e-02, 1.4840e-02]],
[[-8.0007e-03, 1.2751e-02, 4.3901e-02, 5.8435e-03, -7.2627e-02,
1.4647e-02, -8.0584e-03, 4.4595e-03, 6.5557e-03, 5.2891e-04],
[-3.6006e-02, 1.5308e-03, 9.3225e-03, 1.0969e-03, -2.5098e-03,
2.0260e-02, 2.3419e-02, -3.0053e-02, 1.8809e-03, 1.1059e-02],
[-7.7639e-02, 1.8533e-02, 2.0764e-03, 5.9706e-03, 5.6150e-03,
5.6868e-03, 5.2854e-03, 9.8085e-03, 2.0360e-02, 4.3053e-03]],
[[-2.6776e-02, 1.1113e-02, 3.8314e-03, 3.9986e-02, -1.6020e-02,
1.1579e-02, -4.1635e-02, 5.5992e-03, 2.7429e-03, 9.5786e-03],
[-6.8619e-03, -6.4066e-03, 1.0888e-02, 1.4201e-02, 1.4413e-03,
1.3225e-02, 8.0039e-03, -4.9191e-02, 5.6352e-03, 9.0651e-03],
[5.1026e-03, 1.9343e-03, 3.2506e-03, 1.0347e-03, 2.9837e-02,
1.7121e-03, -5.9261e-02, 9.1443e-04, 8.3608e-03, 7.1146e-03]],
[[-2.0848e-02, 7.0754e-03, 2.7633e-03, 2.4447e-03, 3.1520e-02,
7.5401e-03, -5.8895e-02, 8.9559e-04, 5.7796e-03, 2.1724e-02],
[-1.3499e-03, -1.0019e-01, 1.5064e-02, 1.6485e-02, 2.3104e-03,
6.2597e-03, 1.1729e-02, 1.0275e-02, 2.6635e-02, 1.2782e-02],
[7.1796e-03, 3.2656e-03, 1.2430e-03, 1.0712e-03, 6.6856e-03,
1.4207e-03, 1.8792e-02, 8.2297e-03, -5.5865e-02, 7.9753e-03]]]
assert np.allclose(grad[0].asnumpy(), expect_grad, atol=1e-5)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册