Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
d21871a4
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d21871a4
编写于
7月 25, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 25, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3375 add bert ci script
Merge pull request !3375 from yoonlee666/bertci
上级
0a74c8a5
4c167e30
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
27 addition
and
10 deletion
+27
-10
tests/st/networks/models/bert/test_bert_tdt_lossscale.py
tests/st/networks/models/bert/test_bert_tdt_lossscale.py
+27
-10
未找到文件。
tests/st/networks/models/bert/test_bert_tdt_lossscale.py
浏览文件 @
d21871a4
...
...
@@ -28,6 +28,7 @@ import mindspore.dataset.engine.datasets as de
import
mindspore.dataset.transforms.c_transforms
as
C
from
mindspore
import
context
from
mindspore
import
log
as
logger
from
mindspore.ops
import
operations
as
P
from
mindspore.common.tensor
import
Tensor
from
mindspore.nn.optim
import
Lamb
from
mindspore.train.callback
import
Callback
...
...
@@ -129,7 +130,10 @@ def weight_variable(shape):
class
BertLearningRate
(
lr_schedules
.
LearningRateSchedule
):
def
__init__
(
self
,
learning_rate
,
end_learning_rate
,
warmup_steps
,
decay_steps
,
power
):
super
(
BertLearningRate
,
self
).
__init__
()
self
.
warmup_lr
=
lr_schedules
.
WarmUpLR
(
learning_rate
,
warmup_steps
)
self
.
warmup_flag
=
False
if
warmup_steps
>
0
:
self
.
warmup_flag
=
True
self
.
warmup_lr
=
lr_schedules
.
WarmUpLR
(
learning_rate
,
warmup_steps
)
self
.
decay_lr
=
lr_schedules
.
PolynomialDecayLR
(
learning_rate
,
end_learning_rate
,
decay_steps
,
power
)
self
.
warmup_steps
=
Tensor
(
np
.
array
([
warmup_steps
]).
astype
(
np
.
float32
))
...
...
@@ -138,10 +142,13 @@ class BertLearningRate(lr_schedules.LearningRateSchedule):
self
.
cast
=
P
.
Cast
()
def
construct
(
self
,
global_step
):
is_warmup
=
self
.
cast
(
self
.
greater
(
self
.
warmup_steps
,
global_step
),
mstype
.
float32
)
warmup_lr
=
self
.
warmup_lr
(
global_step
)
decay_lr
=
self
.
decay_lr
(
global_step
)
lr
=
(
self
.
one
-
is_warmup
)
*
decay_lr
+
is_warmup
*
warmup_lr
if
self
.
warmup_flag
:
is_warmup
=
self
.
cast
(
self
.
greater
(
self
.
warmup_steps
,
global_step
),
mstype
.
float32
)
warmup_lr
=
self
.
warmup_lr
(
global_step
)
lr
=
(
self
.
one
-
is_warmup
)
*
decay_lr
+
is_warmup
*
warmup_lr
else
:
lr
=
decay_lr
return
lr
...
...
@@ -174,6 +181,10 @@ class TimeMonitor(Callback):
self
.
epoch_mseconds_list
.
append
(
epoch_mseconds
)
self
.
per_step_mseconds_list
.
append
(
epoch_mseconds
/
self
.
data_size
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
env_onecard
def
test_bert_percision
():
"""test bert percision"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
,
reserve_class_name_in_scope
=
False
)
...
...
@@ -187,10 +198,11 @@ def test_bert_percision():
power
=
10.0
,
warmup_steps
=
0
)
decay_filter
=
lambda
x
:
'layernorm'
not
in
x
.
name
.
lower
()
and
'bias'
not
in
x
.
name
.
lower
()
no_decay_filter
=
lambda
x
:
'layernorm'
in
x
.
name
.
lower
()
or
'bias'
in
x
.
name
.
lower
()
decay_params
=
list
(
filter
(
decay_filter
,
net
_with_
loss
.
trainable_params
()))
other_params
=
list
(
filter
(
no_decay_filter
,
net
_with_
loss
.
trainable_params
()))
decay_params
=
list
(
filter
(
decay_filter
,
net
with
loss
.
trainable_params
()))
other_params
=
list
(
filter
(
no_decay_filter
,
net
with
loss
.
trainable_params
()))
group_params
=
[{
'params'
:
decay_params
,
'weight_decay'
:
0.01
},
{
'params'
:
other_params
}]
{
'params'
:
other_params
},
{
'order_params'
:
netwithloss
.
trainable_params
()}]
optimizer
=
Lamb
(
group_params
,
lr
)
scale_window
=
3
scale_manager
=
DynamicLossScaleManager
(
2
**
16
,
2
,
scale_window
)
...
...
@@ -239,6 +251,10 @@ def test_bert_percision():
print
(
"loss scale: {}"
.
format
(
loss_scale
))
assert
np
.
allclose
(
loss_scale
,
expect_loss_scale
,
0
,
0
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
env_onecard
def
test_bert_performance
():
"""test bert performance"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
,
reserve_class_name_in_scope
=
False
)
...
...
@@ -253,10 +269,11 @@ def test_bert_performance():
power
=
10.0
,
warmup_steps
=
0
)
decay_filter
=
lambda
x
:
'layernorm'
not
in
x
.
name
.
lower
()
and
'bias'
not
in
x
.
name
.
lower
()
no_decay_filter
=
lambda
x
:
'layernorm'
in
x
.
name
.
lower
()
or
'bias'
in
x
.
name
.
lower
()
decay_params
=
list
(
filter
(
decay_filter
,
net
_with_
loss
.
trainable_params
()))
other_params
=
list
(
filter
(
no_decay_filter
,
net
_with_
loss
.
trainable_params
()))
decay_params
=
list
(
filter
(
decay_filter
,
net
with
loss
.
trainable_params
()))
other_params
=
list
(
filter
(
no_decay_filter
,
net
with
loss
.
trainable_params
()))
group_params
=
[{
'params'
:
decay_params
,
'weight_decay'
:
0.01
},
{
'params'
:
other_params
}]
{
'params'
:
other_params
},
{
'order_params'
:
netwithloss
.
trainable_params
()}]
optimizer
=
Lamb
(
group_params
,
lr
)
scale_window
=
3
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录