提交 cf7c60a5 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2431 update README

Merge pull request !2431 from panfengfeng/update_readme
...@@ -8,11 +8,11 @@ MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable co ...@@ -8,11 +8,11 @@ MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable co
# Dataset # Dataset
Dataset used: imagenet Dataset used: imagenet2012
- Dataset size: ~125G, 1.2W colorful images in 1000 classes - Dataset size: ~125G
- Train: 120G, 1.2W images - Train: 120G, 1281167 images: 1000 directories
- Test: 5G, 50000 images - Test: 5G, 50000 images: images should be classified into 1000 directories firstly, just like train images
- Data format: RGB images. - Data format: RGB images.
- Note: Data will be processed in src/dataset.py - Note: Data will be processed in src/dataset.py
...@@ -139,4 +139,4 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625. ...@@ -139,4 +139,4 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
| Model for inference | | | | | Model for inference | | | |
# ModelZoo Homepage # ModelZoo Homepage
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo) [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
\ No newline at end of file
...@@ -10,9 +10,9 @@ MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable co ...@@ -10,9 +10,9 @@ MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable co
Dataset used: imagenet Dataset used: imagenet
- Dataset size: ~125G, 1.2W colorful images in 1000 classes - Dataset size: ~125G
- Train: 120G, 1.2W images - Train: 120G, 1281167 images: 1000 directories
- Test: 5G, 50000 images - Test: 5G, 50000 images: images should be classified into 1000 directories firstly, just like train images
- Data format: RGB images. - Data format: RGB images.
- Note: Data will be processed in src/dataset.py - Note: Data will be processed in src/dataset.py
...@@ -99,4 +99,4 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625. ...@@ -99,4 +99,4 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
# ModelZoo Homepage # ModelZoo Homepage
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo) [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
\ No newline at end of file
...@@ -14,7 +14,7 @@ This is an example of training ResNet-50 with ImageNet2012 dataset in MindSpore. ...@@ -14,7 +14,7 @@ This is an example of training ResNet-50 with ImageNet2012 dataset in MindSpore.
> ``` > ```
> . > .
> ├── ilsvrc # train dataset > ├── ilsvrc # train dataset
> └── ilsvrc_eval # infer dataset > └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images
> ``` > ```
...@@ -147,4 +147,4 @@ python train.py --dataset_path=dataset/ilsvrc/train --device_target="GPU" --pre_ ...@@ -147,4 +147,4 @@ python train.py --dataset_path=dataset/ilsvrc/train --device_target="GPU" --pre_
# infer example # infer example
python eval.py --dataset_path=dataset/ilsvrc/val --device_target="GPU" --checkpoint_path=resnet-90_5004ss.ckpt python eval.py --dataset_path=dataset/ilsvrc/val --device_target="GPU" --checkpoint_path=resnet-90_5004ss.ckpt
``` ```
\ No newline at end of file
...@@ -14,7 +14,7 @@ This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by secon ...@@ -14,7 +14,7 @@ This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by secon
> ``` > ```
> . > .
> ├── ilsvrc # train dataset > ├── ilsvrc # train dataset
> └── ilsvrc_eval # infer dataset > └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images
> ``` > ```
......
...@@ -14,7 +14,7 @@ This is an example of training ResNet-50_quant with ImageNet2012 dataset in Mind ...@@ -14,7 +14,7 @@ This is an example of training ResNet-50_quant with ImageNet2012 dataset in Mind
> ``` > ```
> . > .
> ├── ilsvrc # train dataset > ├── ilsvrc # train dataset
> └── ilsvrc_eval # infer dataset > └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images
> ``` > ```
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册