提交 cccb230f 编写于 作者: P peixu_ren

Add random normal cuda implementation on GPU

上级 2f565f4c
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "random_op_impl.cuh"
template <typename T>
__global__ void NormalKernel(int seed, curandState *globalState, T *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
curand_init(seed, i, 0, &globalState[i]);
output[i] = curand_normal(&globalState[i]);
}
return;
}
template <typename T>
void StandardNormal(int seed, int seed2, curandState *globalState, T *output, size_t count, cudaStream_t cuda_stream) {
int RNG_seed = 0;
if (seed2 != 0) {
RNG_seed = seed2;
} else if (seed != 0) {
RNG_seed = seed;
} else {
RNG_seed = time(NULL);
}
NormalKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(RNG_seed, globalState, output, count);
return;
}
template void StandardNormal<float>(int seed, int seed2, curandState *globalState,
float *output, size_t count, cudaStream_t cuda_stream);
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_
#include <curand_kernel.h>
#include "device/gpu/cuda_common.h"
template <typename T>
void StandardNormal(int seed, int seed2, curandState *globalState,
T *output, size_t count, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/math/random_op_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(StandardNormal, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
RandomOpGpuKernel, float)
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_
#include <curand_kernel.h>
#include <cuda_runtime_api.h>
#include <vector>
#include <string>
#include <map>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/cuda_impl/random_op_impl.cuh"
namespace mindspore {
namespace kernel {
enum RandomOptype { RANDOM_OP_NORMAL = 0, RANDOM_OP_INVALID_TYPE = 255 };
const std::map<std::string, RandomOptype> kRandomOpTypeMap = {{"StandardNormal", RANDOM_OP_NORMAL}};
template <typename T>
class RandomOpGpuKernel : public GpuKernel {
public:
RandomOpGpuKernel()
: random_op_type_(RANDOM_OP_INVALID_TYPE),
input_size_0_(0),
output_size_(sizeof(T)),
workspace_size_(sizeof(curandState)) {}
~RandomOpGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
void *workspace_addr = GetDeviceAddress<void *>(workspace, 0);
curandState *devStates = reinterpret_cast<curandState *>(workspace_addr);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
switch (random_op_type_) {
case RANDOM_OP_NORMAL: {
StandardNormal(seed_, seed2_, devStates, output_addr, outputs[0]->size / sizeof(T),
reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
default: {
MS_LOG(EXCEPTION) << "Random operation " << random_op_type_ << " is not supported.";
}
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
auto iter = kRandomOpTypeMap.find(kernel_name);
if (iter == kRandomOpTypeMap.end()) {
MS_LOG(EXCEPTION) << "Random operation " << kernel_name << " is not supported.";
} else {
random_op_type_ = iter->second;
}
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but random op needs 1 input.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but random op needs 1 output.";
return false;
}
auto input_shape_0 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < input_shape_0.size(); i++) {
input_size_0_ += input_shape_0[i];
}
input_size_0_ *= sizeof(int);
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < output_shape.size(); i++) {
output_size_ *= output_shape[i];
workspace_size_ *= output_shape[i];
}
seed_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed"));
seed2_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed2"));
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_0_);
output_size_list_.push_back(output_size_);
workspace_size_list_.push_back(workspace_size_);
}
private:
RandomOptype random_op_type_;
size_t input_size_0_;
size_t output_size_;
size_t workspace_size_;
int seed_;
int seed2_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册