Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
c45f79d3
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c45f79d3
编写于
9月 09, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
9月 09, 2020
浏览文件
操作
浏览文件
下载
差异文件
!5384 [MD]-Api changes
Merge pull request !5384 from nhussain/api_changes
上级
88f5cbe5
3bac9d37
变更
156
展开全部
隐藏空白更改
内联
并排
Showing
156 changed file
with
1339 addition
and
1106 deletion
+1339
-1106
mindspore/ccsrc/minddata/dataset/api/python/de_pipeline.cc
mindspore/ccsrc/minddata/dataset/api/python/de_pipeline.cc
+1
-1
mindspore/ccsrc/minddata/dataset/engine/datasetops/source/image_folder_op.cc
...ddata/dataset/engine/datasetops/source/image_folder_op.cc
+1
-1
mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h
mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h
+1
-1
mindspore/dataset/__init__.py
mindspore/dataset/__init__.py
+2
-2
mindspore/dataset/core/py_util_helpers.py
mindspore/dataset/core/py_util_helpers.py
+31
-0
mindspore/dataset/engine/__init__.py
mindspore/dataset/engine/__init__.py
+1
-1
mindspore/dataset/engine/datasets.py
mindspore/dataset/engine/datasets.py
+83
-55
mindspore/dataset/engine/iterators.py
mindspore/dataset/engine/iterators.py
+1
-1
mindspore/dataset/engine/samplers.py
mindspore/dataset/engine/samplers.py
+7
-7
mindspore/dataset/engine/serializer_deserializer.py
mindspore/dataset/engine/serializer_deserializer.py
+7
-6
mindspore/dataset/engine/validators.py
mindspore/dataset/engine/validators.py
+15
-9
mindspore/dataset/text/transforms.py
mindspore/dataset/text/transforms.py
+10
-9
mindspore/dataset/transforms/__init__.py
mindspore/dataset/transforms/__init__.py
+1
-1
mindspore/dataset/transforms/c_transforms.py
mindspore/dataset/transforms/c_transforms.py
+2
-2
mindspore/dataset/transforms/py_transforms.py
mindspore/dataset/transforms/py_transforms.py
+47
-3
mindspore/dataset/transforms/py_transforms_util.py
mindspore/dataset/transforms/py_transforms_util.py
+65
-0
mindspore/dataset/transforms/validators.py
mindspore/dataset/transforms/validators.py
+16
-0
mindspore/dataset/vision/__init__.py
mindspore/dataset/vision/__init__.py
+0
-0
mindspore/dataset/vision/c_transforms.py
mindspore/dataset/vision/c_transforms.py
+4
-3
mindspore/dataset/vision/py_transforms.py
mindspore/dataset/vision/py_transforms.py
+196
-149
mindspore/dataset/vision/py_transforms_util.py
mindspore/dataset/vision/py_transforms_util.py
+1
-59
mindspore/dataset/vision/utils.py
mindspore/dataset/vision/utils.py
+0
-0
mindspore/dataset/vision/validators.py
mindspore/dataset/vision/validators.py
+2
-17
mindspore/train/callback/_summary_collector.py
mindspore/train/callback/_summary_collector.py
+2
-2
model_zoo/official/cv/faster_rcnn/src/dataset.py
model_zoo/official/cv/faster_rcnn/src/dataset.py
+2
-2
model_zoo/official/cv/inceptionv3/src/dataset.py
model_zoo/official/cv/inceptionv3/src/dataset.py
+3
-3
model_zoo/official/cv/maskrcnn/src/dataset.py
model_zoo/official/cv/maskrcnn/src/dataset.py
+2
-2
model_zoo/official/cv/mobilenetv2/src/dataset.py
model_zoo/official/cv/mobilenetv2/src/dataset.py
+13
-11
model_zoo/official/cv/mobilenetv2_quant/src/dataset.py
model_zoo/official/cv/mobilenetv2_quant/src/dataset.py
+12
-11
model_zoo/official/cv/mobilenetv3/src/dataset.py
model_zoo/official/cv/mobilenetv3/src/dataset.py
+3
-3
model_zoo/official/cv/nasnet/src/dataset.py
model_zoo/official/cv/nasnet/src/dataset.py
+8
-8
model_zoo/official/cv/resnet/src/dataset.py
model_zoo/official/cv/resnet/src/dataset.py
+9
-9
model_zoo/official/cv/resnet50_quant/src/dataset.py
model_zoo/official/cv/resnet50_quant/src/dataset.py
+9
-8
model_zoo/official/cv/resnet_thor/src/dataset.py
model_zoo/official/cv/resnet_thor/src/dataset.py
+4
-3
model_zoo/official/cv/resnext50/src/dataset.py
model_zoo/official/cv/resnext50/src/dataset.py
+3
-3
model_zoo/official/cv/shufflenetv2/src/dataset.py
model_zoo/official/cv/shufflenetv2/src/dataset.py
+6
-5
model_zoo/official/cv/ssd/src/dataset.py
model_zoo/official/cv/ssd/src/dataset.py
+1
-1
model_zoo/official/cv/vgg16/src/dataset.py
model_zoo/official/cv/vgg16/src/dataset.py
+3
-3
model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py
model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py
+1
-1
model_zoo/official/cv/yolov3_darknet53_quant/src/yolo_dataset.py
...oo/official/cv/yolov3_darknet53_quant/src/yolo_dataset.py
+1
-1
model_zoo/official/cv/yolov3_resnet18/src/dataset.py
model_zoo/official/cv/yolov3_resnet18/src/dataset.py
+2
-2
model_zoo/official/nlp/bert/src/clue_classification_dataset_process.py
...icial/nlp/bert/src/clue_classification_dataset_process.py
+9
-9
model_zoo/official/recommend/deepfm/src/dataset.py
model_zoo/official/recommend/deepfm/src/dataset.py
+2
-2
model_zoo/official/recommend/wide_and_deep/src/datasets.py
model_zoo/official/recommend/wide_and_deep/src/datasets.py
+2
-2
model_zoo/official/recommend/wide_and_deep_multitable/src/datasets.py
...ficial/recommend/wide_and_deep_multitable/src/datasets.py
+1
-1
tests/st/mem_reuse/resnet_cifar_memreuse.py
tests/st/mem_reuse/resnet_cifar_memreuse.py
+1
-1
tests/st/mem_reuse/resnet_cifar_normal.py
tests/st/mem_reuse/resnet_cifar_normal.py
+1
-1
tests/st/model_zoo_tests/wide_and_deep/python_file_for_ci/datasets.py
...el_zoo_tests/wide_and_deep/python_file_for_ci/datasets.py
+2
-2
tests/st/model_zoo_tests/yolov3/src/dataset.py
tests/st/model_zoo_tests/yolov3/src/dataset.py
+3
-3
tests/st/networks/models/deeplabv3/src/md_dataset.py
tests/st/networks/models/deeplabv3/src/md_dataset.py
+1
-1
tests/st/networks/models/resnet50/src/dataset.py
tests/st/networks/models/resnet50/src/dataset.py
+4
-4
tests/st/networks/models/resnet50/src_thor/dataset.py
tests/st/networks/models/resnet50/src_thor/dataset.py
+4
-4
tests/st/networks/test_gpu_lenet.py
tests/st/networks/test_gpu_lenet.py
+2
-2
tests/st/ops/ascend/test_tdt_data_ms.py
tests/st/ops/ascend/test_tdt_data_ms.py
+2
-4
tests/st/probability/dataset.py
tests/st/probability/dataset.py
+2
-2
tests/st/probability/test_gpu_svi_cvae.py
tests/st/probability/test_gpu_svi_cvae.py
+1
-1
tests/st/probability/test_gpu_svi_vae.py
tests/st/probability/test_gpu_svi_vae.py
+1
-1
tests/st/probability/test_gpu_vae_gan.py
tests/st/probability/test_gpu_vae_gan.py
+1
-1
tests/st/probability/test_uncertainty.py
tests/st/probability/test_uncertainty.py
+2
-2
tests/st/ps/full_ps/test_full_ps_lenet.py
tests/st/ps/full_ps/test_full_ps_lenet.py
+2
-2
tests/st/pynative/test_pynative_resnet50.py
tests/st/pynative/test_pynative_resnet50.py
+1
-1
tests/st/quantization/lenet_quant/dataset.py
tests/st/quantization/lenet_quant/dataset.py
+2
-2
tests/st/summary/test_summary.py
tests/st/summary/test_summary.py
+2
-2
tests/st/tbe_networks/resnet_cifar.py
tests/st/tbe_networks/resnet_cifar.py
+1
-1
tests/st/tbe_networks/test_resnet_cifar_1p.py
tests/st/tbe_networks/test_resnet_cifar_1p.py
+1
-1
tests/st/tbe_networks/test_resnet_cifar_8p.py
tests/st/tbe_networks/test_resnet_cifar_8p.py
+1
-1
tests/ut/python/dataset/test_HWC2CHW.py
tests/ut/python/dataset/test_HWC2CHW.py
+5
-4
tests/ut/python/dataset/test_apply.py
tests/ut/python/dataset/test_apply.py
+3
-3
tests/ut/python/dataset/test_autocontrast.py
tests/ut/python/dataset/test_autocontrast.py
+51
-48
tests/ut/python/dataset/test_batch.py
tests/ut/python/dataset/test_batch.py
+16
-0
tests/ut/python/dataset/test_bounding_box_augment.py
tests/ut/python/dataset/test_bounding_box_augment.py
+9
-9
tests/ut/python/dataset/test_cache_map.py
tests/ut/python/dataset/test_cache_map.py
+6
-6
tests/ut/python/dataset/test_cache_nomap.py
tests/ut/python/dataset/test_cache_nomap.py
+1
-1
tests/ut/python/dataset/test_center_crop.py
tests/ut/python/dataset/test_center_crop.py
+7
-6
tests/ut/python/dataset/test_concat.py
tests/ut/python/dataset/test_concat.py
+10
-9
tests/ut/python/dataset/test_concatenate_op.py
tests/ut/python/dataset/test_concatenate_op.py
+2
-2
tests/ut/python/dataset/test_config.py
tests/ut/python/dataset/test_config.py
+9
-8
tests/ut/python/dataset/test_cut_out.py
tests/ut/python/dataset/test_cut_out.py
+11
-10
tests/ut/python/dataset/test_cutmix_batch_op.py
tests/ut/python/dataset/test_cutmix_batch_op.py
+5
-5
tests/ut/python/dataset/test_dataset_numpy_slices.py
tests/ut/python/dataset/test_dataset_numpy_slices.py
+1
-1
tests/ut/python/dataset/test_datasets_celeba.py
tests/ut/python/dataset/test_datasets_celeba.py
+2
-2
tests/ut/python/dataset/test_datasets_coco.py
tests/ut/python/dataset/test_datasets_coco.py
+1
-1
tests/ut/python/dataset/test_datasets_generator.py
tests/ut/python/dataset/test_datasets_generator.py
+8
-8
tests/ut/python/dataset/test_datasets_get_dataset_size.py
tests/ut/python/dataset/test_datasets_get_dataset_size.py
+4
-4
tests/ut/python/dataset/test_datasets_imagefolder.py
tests/ut/python/dataset/test_datasets_imagefolder.py
+21
-21
tests/ut/python/dataset/test_datasets_sharding.py
tests/ut/python/dataset/test_datasets_sharding.py
+3
-3
tests/ut/python/dataset/test_datasets_voc.py
tests/ut/python/dataset/test_datasets_voc.py
+1
-1
tests/ut/python/dataset/test_decode.py
tests/ut/python/dataset/test_decode.py
+1
-1
tests/ut/python/dataset/test_deviceop_cpu.py
tests/ut/python/dataset/test_deviceop_cpu.py
+1
-1
tests/ut/python/dataset/test_duplicate_op.py
tests/ut/python/dataset/test_duplicate_op.py
+1
-1
tests/ut/python/dataset/test_epoch_ctrl.py
tests/ut/python/dataset/test_epoch_ctrl.py
+1
-1
tests/ut/python/dataset/test_equalize.py
tests/ut/python/dataset/test_equalize.py
+30
-29
tests/ut/python/dataset/test_exceptions.py
tests/ut/python/dataset/test_exceptions.py
+1
-1
tests/ut/python/dataset/test_filterop.py
tests/ut/python/dataset/test_filterop.py
+1
-1
tests/ut/python/dataset/test_five_crop.py
tests/ut/python/dataset/test_five_crop.py
+10
-9
tests/ut/python/dataset/test_flat_map.py
tests/ut/python/dataset/test_flat_map.py
+2
-2
tests/ut/python/dataset/test_get_col_names.py
tests/ut/python/dataset/test_get_col_names.py
+3
-3
tests/ut/python/dataset/test_get_size.py
tests/ut/python/dataset/test_get_size.py
+2
-2
tests/ut/python/dataset/test_invert.py
tests/ut/python/dataset/test_invert.py
+30
-29
tests/ut/python/dataset/test_linear_transformation.py
tests/ut/python/dataset/test_linear_transformation.py
+15
-14
tests/ut/python/dataset/test_minddataset.py
tests/ut/python/dataset/test_minddataset.py
+2
-2
tests/ut/python/dataset/test_mixup_label_smoothing.py
tests/ut/python/dataset/test_mixup_label_smoothing.py
+8
-9
tests/ut/python/dataset/test_mixup_op.py
tests/ut/python/dataset/test_mixup_op.py
+4
-4
tests/ut/python/dataset/test_normalizeOp.py
tests/ut/python/dataset/test_normalizeOp.py
+10
-9
tests/ut/python/dataset/test_onehot_op.py
tests/ut/python/dataset/test_onehot_op.py
+2
-2
tests/ut/python/dataset/test_opt.py
tests/ut/python/dataset/test_opt.py
+15
-9
tests/ut/python/dataset/test_opt_pass.py
tests/ut/python/dataset/test_opt_pass.py
+4
-4
tests/ut/python/dataset/test_pad.py
tests/ut/python/dataset/test_pad.py
+9
-8
tests/ut/python/dataset/test_paddeddataset.py
tests/ut/python/dataset/test_paddeddataset.py
+4
-4
tests/ut/python/dataset/test_profiling.py
tests/ut/python/dataset/test_profiling.py
+1
-1
tests/ut/python/dataset/test_pyfunc.py
tests/ut/python/dataset/test_pyfunc.py
+6
-6
tests/ut/python/dataset/test_random_affine.py
tests/ut/python/dataset/test_random_affine.py
+12
-11
tests/ut/python/dataset/test_random_apply.py
tests/ut/python/dataset/test_random_apply.py
+10
-9
tests/ut/python/dataset/test_random_choice.py
tests/ut/python/dataset/test_random_choice.py
+12
-11
tests/ut/python/dataset/test_random_color.py
tests/ut/python/dataset/test_random_color.py
+24
-22
tests/ut/python/dataset/test_random_color_adjust.py
tests/ut/python/dataset/test_random_color_adjust.py
+9
-8
tests/ut/python/dataset/test_random_crop.py
tests/ut/python/dataset/test_random_crop.py
+29
-27
tests/ut/python/dataset/test_random_crop_and_resize.py
tests/ut/python/dataset/test_random_crop_and_resize.py
+20
-19
tests/ut/python/dataset/test_random_crop_and_resize_with_bbox.py
...t/python/dataset/test_random_crop_and_resize_with_bbox.py
+7
-7
tests/ut/python/dataset/test_random_crop_decode_resize.py
tests/ut/python/dataset/test_random_crop_decode_resize.py
+1
-1
tests/ut/python/dataset/test_random_crop_with_bbox.py
tests/ut/python/dataset/test_random_crop_with_bbox.py
+11
-11
tests/ut/python/dataset/test_random_erasing.py
tests/ut/python/dataset/test_random_erasing.py
+8
-7
tests/ut/python/dataset/test_random_grayscale.py
tests/ut/python/dataset/test_random_grayscale.py
+17
-15
tests/ut/python/dataset/test_random_horizontal_flip.py
tests/ut/python/dataset/test_random_horizontal_flip.py
+9
-8
tests/ut/python/dataset/test_random_horizontal_flip_with_bbox.py
...t/python/dataset/test_random_horizontal_flip_with_bbox.py
+8
-8
tests/ut/python/dataset/test_random_order.py
tests/ut/python/dataset/test_random_order.py
+8
-7
tests/ut/python/dataset/test_random_perspective.py
tests/ut/python/dataset/test_random_perspective.py
+9
-8
tests/ut/python/dataset/test_random_posterize.py
tests/ut/python/dataset/test_random_posterize.py
+1
-1
tests/ut/python/dataset/test_random_resize.py
tests/ut/python/dataset/test_random_resize.py
+1
-1
tests/ut/python/dataset/test_random_resize_with_bbox.py
tests/ut/python/dataset/test_random_resize_with_bbox.py
+5
-5
tests/ut/python/dataset/test_random_rotation.py
tests/ut/python/dataset/test_random_rotation.py
+23
-21
tests/ut/python/dataset/test_random_select_subpolicy.py
tests/ut/python/dataset/test_random_select_subpolicy.py
+1
-1
tests/ut/python/dataset/test_random_sharpness.py
tests/ut/python/dataset/test_random_sharpness.py
+28
-27
tests/ut/python/dataset/test_random_solarize_op.py
tests/ut/python/dataset/test_random_solarize_op.py
+1
-1
tests/ut/python/dataset/test_random_vertical_flip.py
tests/ut/python/dataset/test_random_vertical_flip.py
+9
-8
tests/ut/python/dataset/test_random_vertical_flip_with_bbox.py
.../ut/python/dataset/test_random_vertical_flip_with_bbox.py
+7
-7
tests/ut/python/dataset/test_repeat.py
tests/ut/python/dataset/test_repeat.py
+1
-1
tests/ut/python/dataset/test_rescale_op.py
tests/ut/python/dataset/test_rescale_op.py
+1
-1
tests/ut/python/dataset/test_resize.py
tests/ut/python/dataset/test_resize.py
+2
-2
tests/ut/python/dataset/test_resize_with_bbox.py
tests/ut/python/dataset/test_resize_with_bbox.py
+5
-5
tests/ut/python/dataset/test_rgb_hsv.py
tests/ut/python/dataset/test_rgb_hsv.py
+7
-6
tests/ut/python/dataset/test_serdes_dataset.py
tests/ut/python/dataset/test_serdes_dataset.py
+3
-3
tests/ut/python/dataset/test_skip.py
tests/ut/python/dataset/test_skip.py
+1
-1
tests/ut/python/dataset/test_soft_dvpp.py
tests/ut/python/dataset/test_soft_dvpp.py
+1
-1
tests/ut/python/dataset/test_ten_crop.py
tests/ut/python/dataset/test_ten_crop.py
+10
-9
tests/ut/python/dataset/test_text_basic_tokenizer.py
tests/ut/python/dataset/test_text_basic_tokenizer.py
+1
-1
tests/ut/python/dataset/test_text_bert_tokenizer.py
tests/ut/python/dataset/test_text_bert_tokenizer.py
+1
-1
tests/ut/python/dataset/test_text_jieba_tokenizer.py
tests/ut/python/dataset/test_text_jieba_tokenizer.py
+10
-10
tests/ut/python/dataset/test_text_tokenizer.py
tests/ut/python/dataset/test_text_tokenizer.py
+5
-5
tests/ut/python/dataset/test_text_wordpiece_tokenizer.py
tests/ut/python/dataset/test_text_wordpiece_tokenizer.py
+1
-1
tests/ut/python/dataset/test_to_pil.py
tests/ut/python/dataset/test_to_pil.py
+7
-6
tests/ut/python/dataset/test_to_type.py
tests/ut/python/dataset/test_to_type.py
+16
-15
tests/ut/python/dataset/test_type_cast.py
tests/ut/python/dataset/test_type_cast.py
+7
-6
tests/ut/python/dataset/test_uniform_augment.py
tests/ut/python/dataset/test_uniform_augment.py
+19
-16
tests/ut/python/dataset/test_var_batch_map.py
tests/ut/python/dataset/test_var_batch_map.py
+1
-1
tests/ut/python/dataset/util.py
tests/ut/python/dataset/util.py
+2
-2
未找到文件。
mindspore/ccsrc/minddata/dataset/api/python/de_pipeline.cc
浏览文件 @
c45f79d3
...
@@ -733,7 +733,7 @@ Status DEPipeline::ParseMapOp(const py::dict &args, std::shared_ptr<DatasetOp> *
...
@@ -733,7 +733,7 @@ Status DEPipeline::ParseMapOp(const py::dict &args, std::shared_ptr<DatasetOp> *
(
void
)
map_builder
.
SetInColNames
(
in_col_names
);
(
void
)
map_builder
.
SetInColNames
(
in_col_names
);
}
else
if
(
key
==
"output_columns"
)
{
}
else
if
(
key
==
"output_columns"
)
{
(
void
)
map_builder
.
SetOutColNames
(
ToStringVector
(
value
));
(
void
)
map_builder
.
SetOutColNames
(
ToStringVector
(
value
));
}
else
if
(
key
==
"column
s
_order"
)
{
}
else
if
(
key
==
"column_order"
)
{
project_columns
=
ToStringVector
(
value
);
project_columns
=
ToStringVector
(
value
);
}
else
if
(
key
==
"num_parallel_workers"
)
{
}
else
if
(
key
==
"num_parallel_workers"
)
{
num_workers
=
ToInt
(
value
);
num_workers
=
ToInt
(
value
);
...
...
mindspore/ccsrc/minddata/dataset/engine/datasetops/source/image_folder_op.cc
浏览文件 @
c45f79d3
...
@@ -113,7 +113,7 @@ Status ImageFolderOp::PrescanMasterEntry(const std::string &filedir) {
...
@@ -113,7 +113,7 @@ Status ImageFolderOp::PrescanMasterEntry(const std::string &filedir) {
num_rows_
=
image_label_pairs_
.
size
();
num_rows_
=
image_label_pairs_
.
size
();
if
(
num_rows_
==
0
)
{
if
(
num_rows_
==
0
)
{
RETURN_STATUS_UNEXPECTED
(
RETURN_STATUS_UNEXPECTED
(
"There is no valid data matching the dataset API ImageFolderDataset
V2.
Please check file path or dataset "
"There is no valid data matching the dataset API ImageFolderDataset
.
Please check file path or dataset "
"API validation first."
);
"API validation first."
);
}
}
// free memory of two queues used for pre-scan
// free memory of two queues used for pre-scan
...
...
mindspore/ccsrc/minddata/dataset/kernels/tensor_op.h
浏览文件 @
c45f79d3
...
@@ -111,7 +111,7 @@ constexpr char kWhitespaceTokenizerOp[] = "WhitespaceTokenizerOp";
...
@@ -111,7 +111,7 @@ constexpr char kWhitespaceTokenizerOp[] = "WhitespaceTokenizerOp";
constexpr
char
kWordpieceTokenizerOp
[]
=
"WordpieceTokenizerOp"
;
constexpr
char
kWordpieceTokenizerOp
[]
=
"WordpieceTokenizerOp"
;
constexpr
char
kRandomChoiceOp
[]
=
"RandomChoiceOp"
;
constexpr
char
kRandomChoiceOp
[]
=
"RandomChoiceOp"
;
constexpr
char
kRandomApplyOp
[]
=
"RandomApplyOp"
;
constexpr
char
kRandomApplyOp
[]
=
"RandomApplyOp"
;
constexpr
char
kComposeOp
[]
=
"Compose
Op
"
;
constexpr
char
kComposeOp
[]
=
"Compose"
;
constexpr
char
kRandomSelectSubpolicyOp
[]
=
"RandomSelectSubpolicyOp"
;
constexpr
char
kRandomSelectSubpolicyOp
[]
=
"RandomSelectSubpolicyOp"
;
constexpr
char
kSentencepieceTokenizerOp
[]
=
"SentencepieceTokenizerOp"
;
constexpr
char
kSentencepieceTokenizerOp
[]
=
"SentencepieceTokenizerOp"
;
...
...
mindspore/dataset/__init__.py
浏览文件 @
c45f79d3
...
@@ -19,7 +19,7 @@ can also create samplers with this module to sample data.
...
@@ -19,7 +19,7 @@ can also create samplers with this module to sample data.
"""
"""
from
.core
import
config
from
.core
import
config
from
.engine.datasets
import
TFRecordDataset
,
ImageFolderDataset
V2
,
MnistDataset
,
MindDataset
,
NumpySlicesDataset
,
\
from
.engine.datasets
import
TFRecordDataset
,
ImageFolderDataset
,
MnistDataset
,
MindDataset
,
NumpySlicesDataset
,
\
GeneratorDataset
,
ManifestDataset
,
Cifar10Dataset
,
Cifar100Dataset
,
VOCDataset
,
CocoDataset
,
CelebADataset
,
\
GeneratorDataset
,
ManifestDataset
,
Cifar10Dataset
,
Cifar100Dataset
,
VOCDataset
,
CocoDataset
,
CelebADataset
,
\
TextFileDataset
,
CLUEDataset
,
CSVDataset
,
Schema
,
Shuffle
,
zip
,
RandomDataset
,
PaddedDataset
TextFileDataset
,
CLUEDataset
,
CSVDataset
,
Schema
,
Shuffle
,
zip
,
RandomDataset
,
PaddedDataset
from
.engine.samplers
import
DistributedSampler
,
PKSampler
,
RandomSampler
,
SequentialSampler
,
SubsetRandomSampler
,
\
from
.engine.samplers
import
DistributedSampler
,
PKSampler
,
RandomSampler
,
SequentialSampler
,
SubsetRandomSampler
,
\
...
@@ -28,7 +28,7 @@ from .engine.cache_client import DatasetCache
...
@@ -28,7 +28,7 @@ from .engine.cache_client import DatasetCache
from
.engine.serializer_deserializer
import
serialize
,
deserialize
,
show
from
.engine.serializer_deserializer
import
serialize
,
deserialize
,
show
from
.engine.graphdata
import
GraphData
from
.engine.graphdata
import
GraphData
__all__
=
[
"config"
,
"ImageFolderDataset
V2
"
,
"MnistDataset"
,
"PaddedDataset"
,
__all__
=
[
"config"
,
"ImageFolderDataset"
,
"MnistDataset"
,
"PaddedDataset"
,
"MindDataset"
,
"GeneratorDataset"
,
"TFRecordDataset"
,
"MindDataset"
,
"GeneratorDataset"
,
"TFRecordDataset"
,
"ManifestDataset"
,
"Cifar10Dataset"
,
"Cifar100Dataset"
,
"CelebADataset"
,
"NumpySlicesDataset"
,
"VOCDataset"
,
"ManifestDataset"
,
"Cifar10Dataset"
,
"Cifar100Dataset"
,
"CelebADataset"
,
"NumpySlicesDataset"
,
"VOCDataset"
,
"CocoDataset"
,
"TextFileDataset"
,
"CLUEDataset"
,
"CSVDataset"
,
"Schema"
,
"DistributedSampler"
,
"PKSampler"
,
"CocoDataset"
,
"TextFileDataset"
,
"CLUEDataset"
,
"CSVDataset"
,
"Schema"
,
"DistributedSampler"
,
"PKSampler"
,
...
...
mindspore/dataset/core/py_util_helpers.py
0 → 100644
浏览文件 @
c45f79d3
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
General py_transforms_utils functions.
"""
import
numpy
as
np
def
is_numpy
(
img
):
"""
Check if the input image is Numpy format.
Args:
img: Image to be checked.
Returns:
Bool, True if input is Numpy image.
"""
return
isinstance
(
img
,
np
.
ndarray
)
mindspore/dataset/engine/__init__.py
浏览文件 @
c45f79d3
...
@@ -28,7 +28,7 @@ from .serializer_deserializer import serialize, deserialize, show, compare
...
@@ -28,7 +28,7 @@ from .serializer_deserializer import serialize, deserialize, show, compare
from
.samplers
import
*
from
.samplers
import
*
from
..core
import
config
from
..core
import
config
__all__
=
[
"config"
,
"zip"
,
"ImageFolderDataset
V2
"
,
"MnistDataset"
,
__all__
=
[
"config"
,
"zip"
,
"ImageFolderDataset"
,
"MnistDataset"
,
"MindDataset"
,
"GeneratorDataset"
,
"TFRecordDataset"
,
"CLUEDataset"
,
"CSVDataset"
,
"MindDataset"
,
"GeneratorDataset"
,
"TFRecordDataset"
,
"CLUEDataset"
,
"CSVDataset"
,
"ManifestDataset"
,
"Cifar10Dataset"
,
"Cifar100Dataset"
,
"CelebADataset"
,
"ManifestDataset"
,
"Cifar10Dataset"
,
"Cifar100Dataset"
,
"CelebADataset"
,
"VOCDataset"
,
"CocoDataset"
,
"TextFileDataset"
,
"Schema"
,
"DistributedSampler"
,
"VOCDataset"
,
"CocoDataset"
,
"TextFileDataset"
,
"Schema"
,
"DistributedSampler"
,
...
...
mindspore/dataset/engine/datasets.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
mindspore/dataset/engine/iterators.py
浏览文件 @
c45f79d3
...
@@ -150,7 +150,7 @@ class Iterator:
...
@@ -150,7 +150,7 @@ class Iterator:
op_type
=
OpName
.
SKIP
op_type
=
OpName
.
SKIP
elif
isinstance
(
dataset
,
de
.
TakeDataset
):
elif
isinstance
(
dataset
,
de
.
TakeDataset
):
op_type
=
OpName
.
TAKE
op_type
=
OpName
.
TAKE
elif
isinstance
(
dataset
,
de
.
ImageFolderDataset
V2
):
elif
isinstance
(
dataset
,
de
.
ImageFolderDataset
):
op_type
=
OpName
.
IMAGEFOLDER
op_type
=
OpName
.
IMAGEFOLDER
elif
isinstance
(
dataset
,
de
.
GeneratorDataset
):
elif
isinstance
(
dataset
,
de
.
GeneratorDataset
):
op_type
=
OpName
.
GENERATOR
op_type
=
OpName
.
GENERATOR
...
...
mindspore/dataset/engine/samplers.py
浏览文件 @
c45f79d3
...
@@ -41,7 +41,7 @@ class Sampler:
...
@@ -41,7 +41,7 @@ class Sampler:
>>> for i in range(self.dataset_size - 1, -1, -1):
>>> for i in range(self.dataset_size - 1, -1, -1):
>>> yield i
>>> yield i
>>>
>>>
>>> ds = ds.ImageFolderDataset
V2
(path, sampler=ReverseSampler())
>>> ds = ds.ImageFolderDataset(path, sampler=ReverseSampler())
"""
"""
def
__init__
(
self
,
num_samples
=
None
):
def
__init__
(
self
,
num_samples
=
None
):
...
@@ -232,7 +232,7 @@ class DistributedSampler(BuiltinSampler):
...
@@ -232,7 +232,7 @@ class DistributedSampler(BuiltinSampler):
>>>
>>>
>>> # creates a distributed sampler with 10 shards total. This shard is shard 5
>>> # creates a distributed sampler with 10 shards total. This shard is shard 5
>>> sampler = ds.DistributedSampler(10, 5)
>>> sampler = ds.DistributedSampler(10, 5)
>>> data = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8, sampler=sampler)
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
Raises:
Raises:
ValueError: If num_shards is not positive.
ValueError: If num_shards is not positive.
...
@@ -315,7 +315,7 @@ class PKSampler(BuiltinSampler):
...
@@ -315,7 +315,7 @@ class PKSampler(BuiltinSampler):
>>>
>>>
>>> # creates a PKSampler that will get 3 samples from every class.
>>> # creates a PKSampler that will get 3 samples from every class.
>>> sampler = ds.PKSampler(3)
>>> sampler = ds.PKSampler(3)
>>> data = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8, sampler=sampler)
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
Raises:
Raises:
ValueError: If num_val is not positive.
ValueError: If num_val is not positive.
...
@@ -387,7 +387,7 @@ class RandomSampler(BuiltinSampler):
...
@@ -387,7 +387,7 @@ class RandomSampler(BuiltinSampler):
>>>
>>>
>>> # creates a RandomSampler
>>> # creates a RandomSampler
>>> sampler = ds.RandomSampler()
>>> sampler = ds.RandomSampler()
>>> data = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8, sampler=sampler)
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
Raises:
Raises:
ValueError: If replacement is not boolean.
ValueError: If replacement is not boolean.
...
@@ -447,7 +447,7 @@ class SequentialSampler(BuiltinSampler):
...
@@ -447,7 +447,7 @@ class SequentialSampler(BuiltinSampler):
>>>
>>>
>>> # creates a SequentialSampler
>>> # creates a SequentialSampler
>>> sampler = ds.SequentialSampler()
>>> sampler = ds.SequentialSampler()
>>> data = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8, sampler=sampler)
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
"""
"""
def
__init__
(
self
,
start_index
=
None
,
num_samples
=
None
):
def
__init__
(
self
,
start_index
=
None
,
num_samples
=
None
):
...
@@ -510,7 +510,7 @@ class SubsetRandomSampler(BuiltinSampler):
...
@@ -510,7 +510,7 @@ class SubsetRandomSampler(BuiltinSampler):
>>>
>>>
>>> # creates a SubsetRandomSampler, will sample from the provided indices
>>> # creates a SubsetRandomSampler, will sample from the provided indices
>>> sampler = ds.SubsetRandomSampler()
>>> sampler = ds.SubsetRandomSampler()
>>> data = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8, sampler=sampler)
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
"""
"""
def
__init__
(
self
,
indices
,
num_samples
=
None
):
def
__init__
(
self
,
indices
,
num_samples
=
None
):
...
@@ -573,7 +573,7 @@ class WeightedRandomSampler(BuiltinSampler):
...
@@ -573,7 +573,7 @@ class WeightedRandomSampler(BuiltinSampler):
>>>
>>>
>>> # creates a WeightedRandomSampler that will sample 4 elements without replacement
>>> # creates a WeightedRandomSampler that will sample 4 elements without replacement
>>> sampler = ds.WeightedRandomSampler(weights, 4)
>>> sampler = ds.WeightedRandomSampler(weights, 4)
>>> data = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8, sampler=sampler)
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
Raises:
Raises:
ValueError: If num_samples is not positive.
ValueError: If num_samples is not positive.
...
...
mindspore/dataset/engine/serializer_deserializer.py
浏览文件 @
c45f79d3
...
@@ -21,9 +21,10 @@ import sys
...
@@ -21,9 +21,10 @@ import sys
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
.
import
datasets
as
de
from
.
import
datasets
as
de
from
..
transforms.
vision.utils
import
Inter
,
Border
from
..vision.utils
import
Inter
,
Border
from
..core
import
config
from
..core
import
config
def
serialize
(
dataset
,
json_filepath
=
None
):
def
serialize
(
dataset
,
json_filepath
=
None
):
"""
"""
Serialize dataset pipeline into a json file.
Serialize dataset pipeline into a json file.
...
@@ -44,7 +45,7 @@ def serialize(dataset, json_filepath=None):
...
@@ -44,7 +45,7 @@ def serialize(dataset, json_filepath=None):
>>> DATA_DIR = "../../data/testMnistData"
>>> DATA_DIR = "../../data/testMnistData"
>>> data = ds.MnistDataset(DATA_DIR, 100)
>>> data = ds.MnistDataset(DATA_DIR, 100)
>>> one_hot_encode = C.OneHot(10) # num_classes is input argument
>>> one_hot_encode = C.OneHot(10) # num_classes is input argument
>>> data = data.map(
input_column_names="label", operation=one_hot_encode
)
>>> data = data.map(
operation=one_hot_encode, input_column_names="label"
)
>>> data = data.batch(batch_size=10, drop_remainder=True)
>>> data = data.batch(batch_size=10, drop_remainder=True)
>>>
>>>
>>> ds.engine.serialize(data, json_filepath="mnist_dataset_pipeline.json") # serialize it to json file
>>> ds.engine.serialize(data, json_filepath="mnist_dataset_pipeline.json") # serialize it to json file
...
@@ -77,7 +78,7 @@ def deserialize(input_dict=None, json_filepath=None):
...
@@ -77,7 +78,7 @@ def deserialize(input_dict=None, json_filepath=None):
>>> DATA_DIR = "../../data/testMnistData"
>>> DATA_DIR = "../../data/testMnistData"
>>> data = ds.MnistDataset(DATA_DIR, 100)
>>> data = ds.MnistDataset(DATA_DIR, 100)
>>> one_hot_encode = C.OneHot(10) # num_classes is input argument
>>> one_hot_encode = C.OneHot(10) # num_classes is input argument
>>> data = data.map(
input_column_names="label", operation=one_hot_encode
)
>>> data = data.map(
operation=one_hot_encode, input_column_names="label"
)
>>> data = data.batch(batch_size=10, drop_remainder=True)
>>> data = data.batch(batch_size=10, drop_remainder=True)
>>>
>>>
>>> # Use case 1: to/from json file
>>> # Use case 1: to/from json file
...
@@ -254,7 +255,7 @@ def create_node(node):
...
@@ -254,7 +255,7 @@ def create_node(node):
pyobj
=
None
pyobj
=
None
# Find a matching Dataset class and call the constructor with the corresponding args.
# Find a matching Dataset class and call the constructor with the corresponding args.
# When a new Dataset class is introduced, another if clause and parsing code needs to be added.
# When a new Dataset class is introduced, another if clause and parsing code needs to be added.
if
dataset_op
==
'ImageFolderDataset
V2
'
:
if
dataset_op
==
'ImageFolderDataset'
:
sampler
=
construct_sampler
(
node
.
get
(
'sampler'
))
sampler
=
construct_sampler
(
node
.
get
(
'sampler'
))
pyobj
=
pyclass
(
node
[
'dataset_dir'
],
node
.
get
(
'num_samples'
),
node
.
get
(
'num_parallel_workers'
),
pyobj
=
pyclass
(
node
[
'dataset_dir'
],
node
.
get
(
'num_samples'
),
node
.
get
(
'num_parallel_workers'
),
node
.
get
(
'shuffle'
),
sampler
,
node
.
get
(
'extensions'
),
node
.
get
(
'shuffle'
),
sampler
,
node
.
get
(
'extensions'
),
...
@@ -336,8 +337,8 @@ def create_node(node):
...
@@ -336,8 +337,8 @@ def create_node(node):
elif
dataset_op
==
'MapDataset'
:
elif
dataset_op
==
'MapDataset'
:
tensor_ops
=
construct_tensor_ops
(
node
.
get
(
'operations'
))
tensor_ops
=
construct_tensor_ops
(
node
.
get
(
'operations'
))
pyobj
=
de
.
Dataset
().
map
(
node
.
get
(
'input_columns'
),
tensor_ops
,
node
.
get
(
'output_columns'
),
pyobj
=
de
.
Dataset
().
map
(
tensor_ops
,
node
.
get
(
'input_columns'
)
,
node
.
get
(
'output_columns'
),
node
.
get
(
'column
s
_order'
),
node
.
get
(
'num_parallel_workers'
))
node
.
get
(
'column_order'
),
node
.
get
(
'num_parallel_workers'
))
elif
dataset_op
==
'ShuffleDataset'
:
elif
dataset_op
==
'ShuffleDataset'
:
pyobj
=
de
.
Dataset
().
shuffle
(
node
.
get
(
'buffer_size'
))
pyobj
=
de
.
Dataset
().
shuffle
(
node
.
get
(
'buffer_size'
))
...
...
mindspore/dataset/engine/validators.py
浏览文件 @
c45f79d3
...
@@ -35,8 +35,8 @@ from . import cache_client
...
@@ -35,8 +35,8 @@ from . import cache_client
from
..
import
callback
from
..
import
callback
def
check_imagefolderdataset
v2
(
method
):
def
check_imagefolderdataset
(
method
):
"""A wrapper that wraps a parameter checker around the original Dataset(ImageFolderDataset
V2
)."""
"""A wrapper that wraps a parameter checker around the original Dataset(ImageFolderDataset)."""
@
wraps
(
method
)
@
wraps
(
method
)
def
new_method
(
self
,
*
args
,
**
kwargs
):
def
new_method
(
self
,
*
args
,
**
kwargs
):
...
@@ -474,8 +474,8 @@ def check_batch(method):
...
@@ -474,8 +474,8 @@ def check_batch(method):
@
wraps
(
method
)
@
wraps
(
method
)
def
new_method
(
self
,
*
args
,
**
kwargs
):
def
new_method
(
self
,
*
args
,
**
kwargs
):
[
batch_size
,
drop_remainder
,
num_parallel_workers
,
per_batch_map
,
[
batch_size
,
drop_remainder
,
num_parallel_workers
,
per_batch_map
,
input_columns
,
output_columns
,
input_columns
,
pad_info
],
param_dict
=
parse_user_args
(
method
,
*
args
,
**
kwargs
)
column_order
,
pad_info
],
param_dict
=
parse_user_args
(
method
,
*
args
,
**
kwargs
)
if
not
(
isinstance
(
batch_size
,
int
)
or
(
callable
(
batch_size
))):
if
not
(
isinstance
(
batch_size
,
int
)
or
(
callable
(
batch_size
))):
raise
TypeError
(
"batch_size should either be an int or a callable."
)
raise
TypeError
(
"batch_size should either be an int or a callable."
)
...
@@ -510,6 +510,12 @@ def check_batch(method):
...
@@ -510,6 +510,12 @@ def check_batch(method):
if
len
(
input_columns
)
!=
(
len
(
ins
.
signature
(
per_batch_map
).
parameters
)
-
1
):
if
len
(
input_columns
)
!=
(
len
(
ins
.
signature
(
per_batch_map
).
parameters
)
-
1
):
raise
ValueError
(
"the signature of per_batch_map should match with input columns"
)
raise
ValueError
(
"the signature of per_batch_map should match with input columns"
)
if
output_columns
is
not
None
:
raise
ValueError
(
"output_columns is currently not implemented."
)
if
column_order
is
not
None
:
raise
ValueError
(
"column_order is currently not implemented."
)
return
method
(
self
,
*
args
,
**
kwargs
)
return
method
(
self
,
*
args
,
**
kwargs
)
return
new_method
return
new_method
...
@@ -551,14 +557,14 @@ def check_map(method):
...
@@ -551,14 +557,14 @@ def check_map(method):
@
wraps
(
method
)
@
wraps
(
method
)
def
new_method
(
self
,
*
args
,
**
kwargs
):
def
new_method
(
self
,
*
args
,
**
kwargs
):
[
input_columns
,
_
,
output_columns
,
columns
_order
,
num_parallel_workers
,
python_multiprocessing
,
cache
,
[
_
,
input_columns
,
output_columns
,
column
_order
,
num_parallel_workers
,
python_multiprocessing
,
cache
,
callbacks
],
_
=
\
callbacks
],
_
=
\
parse_user_args
(
method
,
*
args
,
**
kwargs
)
parse_user_args
(
method
,
*
args
,
**
kwargs
)
nreq_param_columns
=
[
'input_columns'
,
'output_columns'
,
'column
s
_order'
]
nreq_param_columns
=
[
'input_columns'
,
'output_columns'
,
'column_order'
]
if
column
s
_order
is
not
None
:
if
column_order
is
not
None
:
type_check
(
column
s_order
,
(
list
,),
"columns
_order"
)
type_check
(
column
_order
,
(
list
,),
"column
_order"
)
if
num_parallel_workers
is
not
None
:
if
num_parallel_workers
is
not
None
:
check_num_parallel_workers
(
num_parallel_workers
)
check_num_parallel_workers
(
num_parallel_workers
)
type_check
(
python_multiprocessing
,
(
bool
,),
"python_multiprocessing"
)
type_check
(
python_multiprocessing
,
(
bool
,),
"python_multiprocessing"
)
...
@@ -571,7 +577,7 @@ def check_map(method):
...
@@ -571,7 +577,7 @@ def check_map(method):
else
:
else
:
type_check
(
callbacks
,
(
callback
.
DSCallback
,),
"callbacks"
)
type_check
(
callbacks
,
(
callback
.
DSCallback
,),
"callbacks"
)
for
param_name
,
param
in
zip
(
nreq_param_columns
,
[
input_columns
,
output_columns
,
column
s
_order
]):
for
param_name
,
param
in
zip
(
nreq_param_columns
,
[
input_columns
,
output_columns
,
column_order
]):
if
param
is
not
None
:
if
param
is
not
None
:
check_columns
(
param
,
param_name
)
check_columns
(
param
,
param_name
)
if
callbacks
is
not
None
:
if
callbacks
is
not
None
:
...
...
mindspore/dataset/text/transforms.py
浏览文件 @
c45f79d3
...
@@ -162,8 +162,9 @@ class JiebaTokenizer(cde.JiebaTokenizerOp):
...
@@ -162,8 +162,9 @@ class JiebaTokenizer(cde.JiebaTokenizerOp):
>>> # If with_offsets=False, then output three columns {["token", dtype=str], ["offsets_start", dtype=uint32],
>>> # If with_offsets=False, then output three columns {["token", dtype=str], ["offsets_start", dtype=uint32],
>>> # ["offsets_limit", dtype=uint32]}
>>> # ["offsets_limit", dtype=uint32]}
>>> tokenizer_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP, with_offsets=True)
>>> tokenizer_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP, with_offsets=True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(operations=tokenizer_op, input_columns=["text"],
>>> columns_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> output_columns=["token", "offsets_start", "offsets_limit"],
>>> column_order=["token", "offsets_start", "offsets_limit"])
"""
"""
@
check_jieba_init
@
check_jieba_init
...
@@ -282,7 +283,7 @@ class UnicodeCharTokenizer(cde.UnicodeCharTokenizerOp):
...
@@ -282,7 +283,7 @@ class UnicodeCharTokenizer(cde.UnicodeCharTokenizerOp):
>>> # ["offsets_limit", dtype=uint32]}
>>> # ["offsets_limit", dtype=uint32]}
>>> tokenizer_op = text.UnicodeCharTokenizer(True)
>>> tokenizer_op = text.UnicodeCharTokenizer(True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_with_offsets
@
check_with_offsets
...
@@ -313,7 +314,7 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp):
...
@@ -313,7 +314,7 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp):
>>> tokenizer_op = text.WordpieceTokenizer(vocab=vocab, unknown_token=['UNK'],
>>> tokenizer_op = text.WordpieceTokenizer(vocab=vocab, unknown_token=['UNK'],
>>> max_bytes_per_token=100, with_offsets=True)
>>> max_bytes_per_token=100, with_offsets=True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_wordpiece_tokenizer
@
check_wordpiece_tokenizer
...
@@ -378,7 +379,7 @@ if platform.system().lower() != 'windows':
...
@@ -378,7 +379,7 @@ if platform.system().lower() != 'windows':
>>> # ["offsets_limit", dtype=uint32]}
>>> # ["offsets_limit", dtype=uint32]}
>>> tokenizer_op = text.WhitespaceTokenizer(True)
>>> tokenizer_op = text.WhitespaceTokenizer(True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_with_offsets
@
check_with_offsets
...
@@ -404,7 +405,7 @@ if platform.system().lower() != 'windows':
...
@@ -404,7 +405,7 @@ if platform.system().lower() != 'windows':
>>> # ["offsets_limit", dtype=uint32]}
>>> # ["offsets_limit", dtype=uint32]}
>>> tokenizer_op = text.UnicodeScriptTokenizerOp(keep_whitespace=True, with_offsets=True)
>>> tokenizer_op = text.UnicodeScriptTokenizerOp(keep_whitespace=True, with_offsets=True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_unicode_script_tokenizer
@
check_unicode_script_tokenizer
...
@@ -497,7 +498,7 @@ if platform.system().lower() != 'windows':
...
@@ -497,7 +498,7 @@ if platform.system().lower() != 'windows':
>>> # ["offsets_limit", dtype=uint32]}
>>> # ["offsets_limit", dtype=uint32]}
>>> tokenizer_op = text.RegexTokenizer(delim_pattern, keep_delim_pattern, with_offsets=True)
>>> tokenizer_op = text.RegexTokenizer(delim_pattern, keep_delim_pattern, with_offsets=True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_regex_tokenizer
@
check_regex_tokenizer
...
@@ -540,7 +541,7 @@ if platform.system().lower() != 'windows':
...
@@ -540,7 +541,7 @@ if platform.system().lower() != 'windows':
>>> preserve_unused_token=True,
>>> preserve_unused_token=True,
>>> with_offsets=True)
>>> with_offsets=True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_basic_tokenizer
@
check_basic_tokenizer
...
@@ -593,7 +594,7 @@ if platform.system().lower() != 'windows':
...
@@ -593,7 +594,7 @@ if platform.system().lower() != 'windows':
>>> normalization_form=NormalizeForm.NONE, preserve_unused_token=True,
>>> normalization_form=NormalizeForm.NONE, preserve_unused_token=True,
>>> with_offsets=True)
>>> with_offsets=True)
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> data = data.map(input_columns=["text"], output_columns=["token", "offsets_start", "offsets_limit"],
>>> column
s
_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
>>> column_order=["token", "offsets_start", "offsets_limit"], operations=tokenizer_op)
"""
"""
@
check_bert_tokenizer
@
check_bert_tokenizer
...
...
mindspore/dataset/transforms/__init__.py
浏览文件 @
c45f79d3
...
@@ -16,6 +16,6 @@ This module is to support common augmentations. C_transforms is a high performan
...
@@ -16,6 +16,6 @@ This module is to support common augmentations. C_transforms is a high performan
image augmentation module which is developed with C++ OpenCV. Py_transforms
image augmentation module which is developed with C++ OpenCV. Py_transforms
provide more kinds of image augmentations which is developed with Python PIL.
provide more kinds of image augmentations which is developed with Python PIL.
"""
"""
from
.
import
vision
from
.
.
import
vision
from
.
import
c_transforms
from
.
import
c_transforms
from
.
import
py_transforms
from
.
import
py_transforms
mindspore/dataset/transforms/c_transforms.py
浏览文件 @
c45f79d3
...
@@ -229,8 +229,8 @@ class Duplicate(cde.DuplicateOp):
...
@@ -229,8 +229,8 @@ class Duplicate(cde.DuplicateOp):
>>> # +---------+
>>> # +---------+
>>> # | [1,2,3] |
>>> # | [1,2,3] |
>>> # +---------+
>>> # +---------+
>>> data = data.map(
input_columns=["x"], operations=Duplicate()
,
>>> data = data.map(
operations=Duplicate(), input_columns=["x"]
,
>>> output_columns=["x", "y"], column
s
_order=["x", "y"])
>>> output_columns=["x", "y"], column_order=["x", "y"])
>>> # Data after
>>> # Data after
>>> # | x | y |
>>> # | x | y |
>>> # +---------+---------+
>>> # +---------+---------+
...
...
mindspore/dataset/transforms/py_transforms.py
浏览文件 @
c45f79d3
...
@@ -17,9 +17,8 @@
...
@@ -17,9 +17,8 @@
This module py_transforms is implemented basing on Python. It provides common
This module py_transforms is implemented basing on Python. It provides common
operations including OneHotOp.
operations including OneHotOp.
"""
"""
from
.validators
import
check_one_hot_op
,
check_compose_list
from
.validators
import
check_one_hot_op
from
.
import
py_transforms_util
as
util
from
.vision
import
py_transforms_util
as
util
class
OneHotOp
:
class
OneHotOp
:
...
@@ -48,3 +47,48 @@ class OneHotOp:
...
@@ -48,3 +47,48 @@ class OneHotOp:
label (numpy.ndarray), label after being Smoothed.
label (numpy.ndarray), label after being Smoothed.
"""
"""
return
util
.
one_hot_encoding
(
label
,
self
.
num_classes
,
self
.
smoothing_rate
)
return
util
.
one_hot_encoding
(
label
,
self
.
num_classes
,
self
.
smoothing_rate
)
class
Compose
:
"""
Compose a list of transforms.
.. Note::
Compose takes a list of transformations either provided in py_transforms or from user-defined implementation;
each can be an initialized transformation class or a lambda function, as long as the output from the last
transformation is a single tensor of type numpy.ndarray. See below for an example of how to use Compose
with py_transforms classes and check out FiveCrop or TenCrop for the use of them in conjunction with lambda
functions.
Args:
transforms (list): List of transformations to be applied.
Examples:
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision.py_transforms as py_transforms
>>> from mindspore.dataset.transforms.py_transforms import Compose
>>> dataset_dir = "path/to/imagefolder_directory"
>>> # create a dataset that reads all files in dataset_dir with 8 threads
>>> dataset = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8)
>>> # create a list of transformations to be applied to the image data
>>> transform = Compose([py_transforms.Decode(),
>>> py_transforms.RandomHorizontalFlip(0.5),
>>> py_transforms.ToTensor(),
>>> py_transforms.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
>>> py_transforms.RandomErasing()])
>>> # apply the transform to the dataset through dataset.map()
>>> dataset = dataset.map(operations=transform, input_columns="image")
"""
@
check_compose_list
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
def
__call__
(
self
,
img
):
"""
Call method.
Returns:
lambda function, Lambda function that takes in an img to apply transformations on.
"""
return
util
.
compose
(
img
,
self
.
transforms
)
mindspore/dataset/transforms/py_transforms_util.py
0 → 100644
浏览文件 @
c45f79d3
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Built-in py_transforms_utils functions.
"""
import
numpy
as
np
from
..core.py_util_helpers
import
is_numpy
def
compose
(
img
,
transforms
):
"""
Compose a list of transforms and apply on the image.
Args:
img (numpy.ndarray): An image in Numpy ndarray.
transforms (list): A list of transform Class objects to be composed.
Returns:
img (numpy.ndarray), An augmented image in Numpy ndarray.
"""
if
is_numpy
(
img
):
for
transform
in
transforms
:
img
=
transform
(
img
)
if
is_numpy
(
img
):
return
img
raise
TypeError
(
'img should be Numpy ndarray. Got {}. Append ToTensor() to transforms'
.
format
(
type
(
img
)))
raise
TypeError
(
'img should be Numpy ndarray. Got {}.'
.
format
(
type
(
img
)))
def
one_hot_encoding
(
label
,
num_classes
,
epsilon
):
"""
Apply label smoothing transformation to the input label, and make label be more smoothing and continuous.
Args:
label (numpy.ndarray): label to be applied label smoothing.
num_classes (int): Num class of object in dataset, value should over 0.
epsilon (float): The adjustable Hyper parameter. Default is 0.0.
Returns:
img (numpy.ndarray), label after being one hot encoded and done label smoothed.
"""
if
label
>
num_classes
:
raise
ValueError
(
'the num_classes is smaller than the category number.'
)
num_elements
=
label
.
size
one_hot_label
=
np
.
zeros
((
num_elements
,
num_classes
),
dtype
=
int
)
if
isinstance
(
label
,
list
)
is
False
:
label
=
[
label
]
for
index
in
range
(
num_elements
):
one_hot_label
[
index
,
label
[
index
]]
=
1
return
(
1
-
epsilon
)
*
one_hot_label
+
epsilon
/
num_classes
mindspore/dataset/transforms/validators.py
浏览文件 @
c45f79d3
...
@@ -200,3 +200,19 @@ def check_random_transform_ops(method):
...
@@ -200,3 +200,19 @@ def check_random_transform_ops(method):
return
method
(
self
,
*
args
,
**
kwargs
)
return
method
(
self
,
*
args
,
**
kwargs
)
return
new_method
return
new_method
def
check_compose_list
(
method
):
"""Wrapper method to check the transform list of Compose."""
@
wraps
(
method
)
def
new_method
(
self
,
*
args
,
**
kwargs
):
[
transforms
],
_
=
parse_user_args
(
method
,
*
args
,
**
kwargs
)
type_check
(
transforms
,
(
list
,),
transforms
)
if
not
transforms
:
raise
ValueError
(
"transforms list is empty."
)
return
method
(
self
,
*
args
,
**
kwargs
)
return
new_method
mindspore/dataset/
transforms/
vision/__init__.py
→
mindspore/dataset/vision/__init__.py
浏览文件 @
c45f79d3
文件已移动
mindspore/dataset/
transforms/
vision/c_transforms.py
→
mindspore/dataset/vision/c_transforms.py
浏览文件 @
c45f79d3
...
@@ -25,11 +25,12 @@ to improve their training models.
...
@@ -25,11 +25,12 @@ to improve their training models.
Examples:
Examples:
>>> import mindspore.dataset as ds
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.transforms.c_transforms as c_transforms
>>> import mindspore.dataset.transforms.c_transforms as c_transforms
>>> import mindspore.dataset.
transforms.
vision.c_transforms as c_vision
>>> import mindspore.dataset.vision.c_transforms as c_vision
>>> from mindspore.dataset.transforms.vision.utils import Border, ImageBatchFormat, Inter
>>> from mindspore.dataset.transforms.vision.utils import Border, ImageBatchFormat, Inter
>>> dataset_dir = "path/to/imagefolder_directory"
>>> dataset_dir = "path/to/imagefolder_directory"
>>> # create a dataset that reads all files in dataset_dir with 8 threads
>>> # create a dataset that reads all files in dataset_dir with 8 threads
>>> data1 = ds.ImageFolderDataset
V2
(dataset_dir, num_parallel_workers=8)
>>> data1 = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8)
>>> # create a list of transformations to be applied to the image data
>>> # create a list of transformations to be applied to the image data
>>> transforms_list = [c_vision.Decode(),
>>> transforms_list = [c_vision.Decode(),
>>> c_vision.Resize((256, 256)),
>>> c_vision.Resize((256, 256)),
...
@@ -1095,7 +1096,7 @@ class UniformAugment(cde.UniformAugOp):
...
@@ -1095,7 +1096,7 @@ class UniformAugment(cde.UniformAugOp):
num_ops (int, optional): Number of operations to be selected and applied (default=2).
num_ops (int, optional): Number of operations to be selected and applied (default=2).
Examples:
Examples:
>>> import mindspore.dataset.
transforms.
vision.py_transforms as py_vision
>>> import mindspore.dataset.vision.py_transforms as py_vision
>>> transforms_list = [c_vision.RandomHorizontalFlip(),
>>> transforms_list = [c_vision.RandomHorizontalFlip(),
>>> c_vision.RandomVerticalFlip(),
>>> c_vision.RandomVerticalFlip(),
>>> c_vision.RandomColorAdjust(),
>>> c_vision.RandomColorAdjust(),
...
...
mindspore/dataset/
transforms/
vision/py_transforms.py
→
mindspore/dataset/vision/py_transforms.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
mindspore/dataset/
transforms/
vision/py_transforms_util.py
→
mindspore/dataset/vision/py_transforms_util.py
浏览文件 @
c45f79d3
...
@@ -24,6 +24,7 @@ import numpy as np
...
@@ -24,6 +24,7 @@ import numpy as np
from
PIL
import
Image
,
ImageOps
,
ImageEnhance
,
__version__
from
PIL
import
Image
,
ImageOps
,
ImageEnhance
,
__version__
from
.utils
import
Inter
from
.utils
import
Inter
from
..core.py_util_helpers
import
is_numpy
augment_error_message
=
'img should be PIL image. Got {}. Use Decode() for encoded data or ToPIL() for decoded data.'
augment_error_message
=
'img should be PIL image. Got {}. Use Decode() for encoded data or ToPIL() for decoded data.'
...
@@ -41,39 +42,6 @@ def is_pil(img):
...
@@ -41,39 +42,6 @@ def is_pil(img):
return
isinstance
(
img
,
Image
.
Image
)
return
isinstance
(
img
,
Image
.
Image
)
def
is_numpy
(
img
):
"""
Check if the input image is NumPy format.
Args:
img: Image to be checked.
Returns:
Bool, True if input is NumPy image.
"""
return
isinstance
(
img
,
np
.
ndarray
)
def
compose
(
img
,
transforms
):
"""
Compose a list of transforms and apply on the image.
Args:
img (numpy.ndarray): An image in NumPy ndarray.
transforms (list): A list of transform Class objects to be composed.
Returns:
img (numpy.ndarray), An augmented image in NumPy ndarray.
"""
if
is_numpy
(
img
):
for
transform
in
transforms
:
img
=
transform
(
img
)
if
is_numpy
(
img
):
return
img
raise
TypeError
(
'img should be NumPy ndarray. Got {}. Append ToTensor() to transforms'
.
format
(
type
(
img
)))
raise
TypeError
(
'img should be NumPy ndarray. Got {}.'
.
format
(
type
(
img
)))
def
normalize
(
img
,
mean
,
std
):
def
normalize
(
img
,
mean
,
std
):
"""
"""
Normalize the image between [0, 1] with respect to mean and standard deviation.
Normalize the image between [0, 1] with respect to mean and standard deviation.
...
@@ -1221,32 +1189,6 @@ def random_affine(img, angle, translations, scale, shear, resample, fill_value=0
...
@@ -1221,32 +1189,6 @@ def random_affine(img, angle, translations, scale, shear, resample, fill_value=0
return
img
.
transform
(
output_size
,
Image
.
AFFINE
,
matrix
,
resample
,
**
kwargs
)
return
img
.
transform
(
output_size
,
Image
.
AFFINE
,
matrix
,
resample
,
**
kwargs
)
def
one_hot_encoding
(
label
,
num_classes
,
epsilon
):
"""
Apply label smoothing transformation to the input label, and make label be more smoothing and continuous.
Args:
label (numpy.ndarray): label to be applied label smoothing.
num_classes (int): Num class of object in dataset, value should over 0.
epsilon (float): The adjustable Hyper parameter. Default is 0.0.
Returns:
img (numpy.ndarray), label after being one hot encoded and done label smoothed.
"""
if
label
>
num_classes
:
raise
ValueError
(
'the num_classes is smaller than the category number.'
)
num_elements
=
label
.
size
one_hot_label
=
np
.
zeros
((
num_elements
,
num_classes
),
dtype
=
int
)
if
isinstance
(
label
,
list
)
is
False
:
label
=
[
label
]
for
index
in
range
(
num_elements
):
one_hot_label
[
index
,
label
[
index
]]
=
1
return
(
1
-
epsilon
)
*
one_hot_label
+
epsilon
/
num_classes
def
mix_up_single
(
batch_size
,
img
,
label
,
alpha
=
0.2
):
def
mix_up_single
(
batch_size
,
img
,
label
,
alpha
=
0.2
):
"""
"""
Apply mix up transformation to image and label in single batch internal, One hot encoding should done before this.
Apply mix up transformation to image and label in single batch internal, One hot encoding should done before this.
...
...
mindspore/dataset/
transforms/
vision/utils.py
→
mindspore/dataset/vision/utils.py
浏览文件 @
c45f79d3
文件已移动
mindspore/dataset/
transforms/
vision/validators.py
→
mindspore/dataset/vision/validators.py
浏览文件 @
c45f79d3
...
@@ -19,10 +19,10 @@ from functools import wraps
...
@@ -19,10 +19,10 @@ from functools import wraps
import
numpy
as
np
import
numpy
as
np
from
mindspore._c_dataengine
import
TensorOp
from
mindspore._c_dataengine
import
TensorOp
from
.utils
import
Inter
,
Border
,
ImageBatchFormat
from
mindspore.dataset.core.validator_helpers
import
check_value
,
check_uint8
,
FLOAT_MAX_INTEGER
,
check_pos_float32
,
\
from
...core.validator_helpers
import
check_value
,
check_uint8
,
FLOAT_MAX_INTEGER
,
check_pos_float32
,
\
check_2tuple
,
check_range
,
check_positive
,
INT32_MAX
,
parse_user_args
,
type_check
,
type_check_list
,
\
check_2tuple
,
check_range
,
check_positive
,
INT32_MAX
,
parse_user_args
,
type_check
,
type_check_list
,
\
check_tensor_op
,
UINT8_MAX
,
check_value_normalize_std
check_tensor_op
,
UINT8_MAX
,
check_value_normalize_std
from
.utils
import
Inter
,
Border
,
ImageBatchFormat
def
check_crop_size
(
size
):
def
check_crop_size
(
size
):
...
@@ -678,21 +678,6 @@ def check_positive_degrees(method):
...
@@ -678,21 +678,6 @@ def check_positive_degrees(method):
return
new_method
return
new_method
def
check_compose_list
(
method
):
"""Wrapper method to check the transform list of ComposeOp."""
@
wraps
(
method
)
def
new_method
(
self
,
*
args
,
**
kwargs
):
[
transforms
],
_
=
parse_user_args
(
method
,
*
args
,
**
kwargs
)
type_check
(
transforms
,
(
list
,),
transforms
)
if
not
transforms
:
raise
ValueError
(
"transforms list is empty."
)
return
method
(
self
,
*
args
,
**
kwargs
)
return
new_method
def
check_random_select_subpolicy_op
(
method
):
def
check_random_select_subpolicy_op
(
method
):
"""Wrapper method to check the parameters of RandomSelectSubpolicyOp."""
"""Wrapper method to check the parameters of RandomSelectSubpolicyOp."""
...
...
mindspore/train/callback/_summary_collector.py
浏览文件 @
c45f79d3
...
@@ -727,7 +727,7 @@ class SummaryCollector(Callback):
...
@@ -727,7 +727,7 @@ class SummaryCollector(Callback):
Get dataset path of MindDataset object.
Get dataset path of MindDataset object.
Args:
Args:
output_dataset (Union[Dataset, ImageFolderDataset
V2
, MnistDataset, Cifar10Dataset, Cifar100Dataset,
output_dataset (Union[Dataset, ImageFolderDataset, MnistDataset, Cifar10Dataset, Cifar100Dataset,
VOCDataset, CelebADataset, MindDataset, ManifestDataset, TFRecordDataset, TextFileDataset]):
VOCDataset, CelebADataset, MindDataset, ManifestDataset, TFRecordDataset, TextFileDataset]):
Refer to mindspore.dataset.Dataset.
Refer to mindspore.dataset.Dataset.
...
@@ -738,7 +738,7 @@ class SummaryCollector(Callback):
...
@@ -738,7 +738,7 @@ class SummaryCollector(Callback):
IndexError: it means get dataset path failed.
IndexError: it means get dataset path failed.
"""
"""
dataset_package
=
import_module
(
'mindspore.dataset'
)
dataset_package
=
import_module
(
'mindspore.dataset'
)
dataset_dir_set
=
(
dataset_package
.
ImageFolderDataset
V2
,
dataset_package
.
MnistDataset
,
dataset_dir_set
=
(
dataset_package
.
ImageFolderDataset
,
dataset_package
.
MnistDataset
,
dataset_package
.
Cifar10Dataset
,
dataset_package
.
Cifar100Dataset
,
dataset_package
.
Cifar10Dataset
,
dataset_package
.
Cifar100Dataset
,
dataset_package
.
VOCDataset
,
dataset_package
.
CelebADataset
)
dataset_package
.
VOCDataset
,
dataset_package
.
CelebADataset
)
dataset_file_set
=
(
dataset_package
.
MindDataset
,
dataset_package
.
ManifestDataset
)
dataset_file_set
=
(
dataset_package
.
MindDataset
,
dataset_package
.
ManifestDataset
)
...
...
model_zoo/official/cv/faster_rcnn/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -449,7 +449,7 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
...
@@ -449,7 +449,7 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
if
is_training
:
if
is_training
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
column_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
flip
=
(
np
.
random
.
rand
()
<
config
.
flip_ratio
)
flip
=
(
np
.
random
.
rand
()
<
config
.
flip_ratio
)
...
@@ -467,7 +467,7 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
...
@@ -467,7 +467,7 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
else
:
else
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
column_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
],
operations
=
compose_map_func
,
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
num_parallel_workers
=
num_parallel_workers
)
...
...
model_zoo/official/cv/inceptionv3/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -37,10 +37,10 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
...
@@ -37,10 +37,10 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
dataset
dataset
"""
"""
if
group_size
==
1
:
if
group_size
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
,
num_shards
=
group_size
,
shard_id
=
rank
)
num_shards
=
group_size
,
shard_id
=
rank
)
# define map operations
# define map operations
if
do_train
:
if
do_train
:
trans
=
[
trans
=
[
...
...
model_zoo/official/cv/maskrcnn/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -505,7 +505,7 @@ def create_maskrcnn_dataset(mindrecord_file, batch_size=2, device_num=1, rank_id
...
@@ -505,7 +505,7 @@ def create_maskrcnn_dataset(mindrecord_file, batch_size=2, device_num=1, rank_id
if
is_training
:
if
is_training
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
,
"mask"
,
"mask_shape"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
,
"mask"
,
"mask_shape"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
column_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
operations
=
compose_map_func
,
operations
=
compose_map_func
,
python_multiprocessing
=
False
,
python_multiprocessing
=
False
,
num_parallel_workers
=
num_parallel_workers
)
num_parallel_workers
=
num_parallel_workers
)
...
@@ -514,7 +514,7 @@ def create_maskrcnn_dataset(mindrecord_file, batch_size=2, device_num=1, rank_id
...
@@ -514,7 +514,7 @@ def create_maskrcnn_dataset(mindrecord_file, batch_size=2, device_num=1, rank_id
else
:
else
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
,
"mask"
,
"mask_shape"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
,
"mask"
,
"mask_shape"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
output_columns
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
column_order
=
[
"image"
,
"image_shape"
,
"box"
,
"label"
,
"valid_num"
,
"mask"
],
operations
=
compose_map_func
,
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
...
model_zoo/official/cv/mobilenetv2/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -26,6 +26,7 @@ import mindspore.dataset.engine as de
...
@@ -26,6 +26,7 @@ import mindspore.dataset.engine as de
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.c_transforms
as
C2
def
create_dataset
(
dataset_path
,
do_train
,
config
,
repeat_num
=
1
):
def
create_dataset
(
dataset_path
,
do_train
,
config
,
repeat_num
=
1
):
"""
"""
create a train or eval dataset
create a train or eval dataset
...
@@ -44,20 +45,19 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
...
@@ -44,20 +45,19 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
rank_size
=
int
(
os
.
getenv
(
"RANK_SIZE"
,
'1'
))
rank_size
=
int
(
os
.
getenv
(
"RANK_SIZE"
,
'1'
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
,
'0'
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
,
'0'
))
if
rank_size
==
1
:
if
rank_size
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
rank_size
,
shard_id
=
rank_id
)
num_shards
=
rank_size
,
shard_id
=
rank_id
)
elif
config
.
platform
==
"GPU"
:
elif
config
.
platform
==
"GPU"
:
if
do_train
:
if
do_train
:
from
mindspore.communication.management
import
get_rank
,
get_group_size
from
mindspore.communication.management
import
get_rank
,
get_group_size
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
get_group_size
(),
shard_id
=
get_rank
())
num_shards
=
get_group_size
(),
shard_id
=
get_rank
())
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
elif
config
.
platform
==
"CPU"
:
elif
config
.
platform
==
"CPU"
:
ds
=
de
.
ImageFolderDatasetV2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
resize_height
=
config
.
image_height
resize_height
=
config
.
image_height
resize_width
=
config
.
image_width
resize_width
=
config
.
image_width
...
@@ -71,7 +71,8 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
...
@@ -71,7 +71,8 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
resize_op
=
C
.
Resize
((
256
,
256
))
resize_op
=
C
.
Resize
((
256
,
256
))
center_crop
=
C
.
CenterCrop
(
resize_width
)
center_crop
=
C
.
CenterCrop
(
resize_width
)
rescale_op
=
C
.
RandomColorAdjust
(
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
)
rescale_op
=
C
.
RandomColorAdjust
(
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
)
normalize_op
=
C
.
Normalize
(
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
],
std
=
[
0.229
*
255
,
0.224
*
255
,
0.225
*
255
])
normalize_op
=
C
.
Normalize
(
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
],
std
=
[
0.229
*
255
,
0.224
*
255
,
0.225
*
255
])
change_swap_op
=
C
.
HWC2CHW
()
change_swap_op
=
C
.
HWC2CHW
()
if
do_train
:
if
do_train
:
...
@@ -95,6 +96,7 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
...
@@ -95,6 +96,7 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
return
ds
return
ds
def
extract_features
(
net
,
dataset_path
,
config
):
def
extract_features
(
net
,
dataset_path
,
config
):
features_folder
=
dataset_path
+
'_features'
features_folder
=
dataset_path
+
'_features'
if
not
os
.
path
.
exists
(
features_folder
):
if
not
os
.
path
.
exists
(
features_folder
):
...
@@ -110,13 +112,13 @@ def extract_features(net, dataset_path, config):
...
@@ -110,13 +112,13 @@ def extract_features(net, dataset_path, config):
for
data
in
pbar
:
for
data
in
pbar
:
features_path
=
os
.
path
.
join
(
features_folder
,
f
"feature_
{
i
}
.npy"
)
features_path
=
os
.
path
.
join
(
features_folder
,
f
"feature_
{
i
}
.npy"
)
label_path
=
os
.
path
.
join
(
features_folder
,
f
"label_
{
i
}
.npy"
)
label_path
=
os
.
path
.
join
(
features_folder
,
f
"label_
{
i
}
.npy"
)
if
not
(
os
.
path
.
exists
(
features_path
)
and
os
.
path
.
exists
(
label_path
)):
if
not
(
os
.
path
.
exists
(
features_path
)
and
os
.
path
.
exists
(
label_path
)):
image
=
data
[
"image"
]
image
=
data
[
"image"
]
label
=
data
[
"label"
]
label
=
data
[
"label"
]
features
=
model
.
predict
(
Tensor
(
image
))
features
=
model
.
predict
(
Tensor
(
image
))
np
.
save
(
features_path
,
features
.
asnumpy
())
np
.
save
(
features_path
,
features
.
asnumpy
())
np
.
save
(
label_path
,
label
)
np
.
save
(
label_path
,
label
)
pbar
.
set_description
(
"Process dataset batch: %d"
%
(
i
+
1
))
pbar
.
set_description
(
"Process dataset batch: %d"
%
(
i
+
1
))
i
+=
1
i
+=
1
return
step_size
return
step_size
model_zoo/official/cv/mobilenetv2_quant/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -21,7 +21,8 @@ import mindspore.common.dtype as mstype
...
@@ -21,7 +21,8 @@ import mindspore.common.dtype as mstype
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.vision.py_transforms
as
P
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.vision.py_transforms
as
P
def
create_dataset
(
dataset_path
,
do_train
,
config
,
device_target
,
repeat_num
=
1
,
batch_size
=
32
):
def
create_dataset
(
dataset_path
,
do_train
,
config
,
device_target
,
repeat_num
=
1
,
batch_size
=
32
):
...
@@ -44,7 +45,7 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
...
@@ -44,7 +45,7 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
if
config
.
data_load_mode
==
"mindrecord"
:
if
config
.
data_load_mode
==
"mindrecord"
:
load_func
=
partial
(
de
.
MindDataset
,
dataset_path
,
columns_list
)
load_func
=
partial
(
de
.
MindDataset
,
dataset_path
,
columns_list
)
else
:
else
:
load_func
=
partial
(
de
.
ImageFolderDataset
V2
,
dataset_path
)
load_func
=
partial
(
de
.
ImageFolderDataset
,
dataset_path
)
if
do_train
:
if
do_train
:
if
rank_size
==
1
:
if
rank_size
==
1
:
ds
=
load_func
(
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
load_func
(
num_parallel_workers
=
8
,
shuffle
=
True
)
...
@@ -56,10 +57,10 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
...
@@ -56,10 +57,10 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
elif
device_target
==
"GPU"
:
elif
device_target
==
"GPU"
:
if
do_train
:
if
do_train
:
from
mindspore.communication.management
import
get_rank
,
get_group_size
from
mindspore.communication.management
import
get_rank
,
get_group_size
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
get_group_size
(),
shard_id
=
get_rank
())
num_shards
=
get_group_size
(),
shard_id
=
get_rank
())
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
raise
ValueError
(
"Unsupported device_target."
)
raise
ValueError
(
"Unsupported device_target."
)
...
@@ -118,12 +119,12 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
...
@@ -118,12 +119,12 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
))
if
do_train
:
if
do_train
:
if
rank_size
==
1
:
if
rank_size
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
rank_size
,
shard_id
=
rank_id
)
num_shards
=
rank_size
,
shard_id
=
rank_id
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
False
)
else
:
else
:
raise
ValueError
(
"Unsupported device target."
)
raise
ValueError
(
"Unsupported device target."
)
...
@@ -149,9 +150,9 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
...
@@ -149,9 +150,9 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
else
:
else
:
trans
=
[
decode_op
,
resize_op
,
center_crop
,
to_tensor
,
normalize_op
]
trans
=
[
decode_op
,
resize_op
,
center_crop
,
to_tensor
,
normalize_op
]
compose
=
P
.
ComposeOp
(
trans
)
compose
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
trans
)
ds
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
compose
()
,
num_parallel_workers
=
8
,
python_multiprocessing
=
True
)
ds
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
compose
,
num_parallel_workers
=
8
,
python_multiprocessing
=
True
)
# apply batch operations
# apply batch operations
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
...
model_zoo/official/cv/mobilenetv3/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -37,10 +37,10 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
...
@@ -37,10 +37,10 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
if
device_target
==
"GPU"
:
if
device_target
==
"GPU"
:
if
do_train
:
if
do_train
:
from
mindspore.communication.management
import
get_rank
,
get_group_size
from
mindspore.communication.management
import
get_rank
,
get_group_size
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
get_group_size
(),
shard_id
=
get_rank
())
num_shards
=
get_group_size
(),
shard_id
=
get_rank
())
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
raise
ValueError
(
"Unsupported device_target."
)
raise
ValueError
(
"Unsupported device_target."
)
...
...
model_zoo/official/cv/nasnet/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -37,24 +37,24 @@ def create_dataset(dataset_path, config, do_train, repeat_num=1):
...
@@ -37,24 +37,24 @@ def create_dataset(dataset_path, config, do_train, repeat_num=1):
rank
=
config
.
rank
rank
=
config
.
rank
group_size
=
config
.
group_size
group_size
=
config
.
group_size
if
group_size
==
1
:
if
group_size
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
config
.
work_nums
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
config
.
work_nums
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
config
.
work_nums
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
config
.
work_nums
,
shuffle
=
True
,
num_shards
=
group_size
,
shard_id
=
rank
)
num_shards
=
group_size
,
shard_id
=
rank
)
# define map operations
# define map operations
if
do_train
:
if
do_train
:
trans
=
[
trans
=
[
C
.
RandomCropDecodeResize
(
config
.
image_size
),
C
.
RandomCropDecodeResize
(
config
.
image_size
),
C
.
RandomHorizontalFlip
(
prob
=
0.5
),
C
.
RandomHorizontalFlip
(
prob
=
0.5
),
C
.
RandomColorAdjust
(
brightness
=
0.4
,
saturation
=
0.5
)
# fast mode
C
.
RandomColorAdjust
(
brightness
=
0.4
,
saturation
=
0.5
)
# fast mode
#C.RandomColorAdjust(brightness=0.4, contrast=0.5, saturation=0.5, hue=0.2)
#
C.RandomColorAdjust(brightness=0.4, contrast=0.5, saturation=0.5, hue=0.2)
]
]
else
:
else
:
trans
=
[
trans
=
[
C
.
Decode
(),
C
.
Decode
(),
C
.
Resize
(
int
(
config
.
image_size
/
0.875
)),
C
.
Resize
(
int
(
config
.
image_size
/
0.875
)),
C
.
CenterCrop
(
config
.
image_size
)
C
.
CenterCrop
(
config
.
image_size
)
]
]
trans
+=
[
trans
+=
[
C
.
Rescale
(
1.0
/
255.0
,
0.0
),
C
.
Rescale
(
1.0
/
255.0
,
0.0
),
C
.
Normalize
(
mean
=
[
0.5
,
0.5
,
0.5
],
std
=
[
0.5
,
0.5
,
0.5
]),
C
.
Normalize
(
mean
=
[
0.5
,
0.5
,
0.5
],
std
=
[
0.5
,
0.5
,
0.5
]),
...
...
model_zoo/official/cv/resnet/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -98,10 +98,10 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
...
@@ -98,10 +98,10 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
device_num
=
get_group_size
()
device_num
=
get_group_size
()
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
image_size
=
224
image_size
=
224
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
...
@@ -153,10 +153,10 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target=
...
@@ -153,10 +153,10 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target=
device_num
,
rank_id
=
_get_rank_info
()
device_num
,
rank_id
=
_get_rank_info
()
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
image_size
=
224
image_size
=
224
mean
=
[
0.475
*
255
,
0.451
*
255
,
0.392
*
255
]
mean
=
[
0.475
*
255
,
0.451
*
255
,
0.392
*
255
]
std
=
[
0.275
*
255
,
0.267
*
255
,
0.278
*
255
]
std
=
[
0.275
*
255
,
0.267
*
255
,
0.278
*
255
]
...
@@ -207,10 +207,10 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target=
...
@@ -207,10 +207,10 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target=
if
target
==
"Ascend"
:
if
target
==
"Ascend"
:
device_num
,
rank_id
=
_get_rank_info
()
device_num
,
rank_id
=
_get_rank_info
()
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
12
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
12
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
12
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
12
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
image_size
=
224
image_size
=
224
mean
=
[
123.68
,
116.78
,
103.94
]
mean
=
[
123.68
,
116.78
,
103.94
]
std
=
[
1.0
,
1.0
,
1.0
]
std
=
[
1.0
,
1.0
,
1.0
]
...
...
model_zoo/official/cv/resnet50_quant/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -21,7 +21,8 @@ import mindspore.common.dtype as mstype
...
@@ -21,7 +21,8 @@ import mindspore.common.dtype as mstype
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.vision.py_transforms
as
P
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.vision.py_transforms
as
P
from
mindspore.communication.management
import
init
,
get_rank
,
get_group_size
from
mindspore.communication.management
import
init
,
get_rank
,
get_group_size
from
src.config
import
config_quant
from
src.config
import
config_quant
...
@@ -54,7 +55,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
...
@@ -54,7 +55,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
if
config
.
data_load_mode
==
"mindrecord"
:
if
config
.
data_load_mode
==
"mindrecord"
:
load_func
=
partial
(
de
.
MindDataset
,
dataset_path
,
columns_list
)
load_func
=
partial
(
de
.
MindDataset
,
dataset_path
,
columns_list
)
else
:
else
:
load_func
=
partial
(
de
.
ImageFolderDataset
V2
,
dataset_path
)
load_func
=
partial
(
de
.
ImageFolderDataset
,
dataset_path
)
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
load_func
(
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
load_func
(
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
...
@@ -120,12 +121,12 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
...
@@ -120,12 +121,12 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
if
do_train
:
if
do_train
:
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
False
)
image_size
=
224
image_size
=
224
...
@@ -145,8 +146,8 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
...
@@ -145,8 +146,8 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
else
:
else
:
trans
=
[
decode_op
,
resize_op
,
center_crop
,
to_tensor
,
normalize_op
]
trans
=
[
decode_op
,
resize_op
,
center_crop
,
to_tensor
,
normalize_op
]
compose
=
P
.
ComposeOp
(
trans
)
compose
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
trans
)
ds
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
compose
()
,
num_parallel_workers
=
8
,
python_multiprocessing
=
True
)
ds
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
compose
,
num_parallel_workers
=
8
,
python_multiprocessing
=
True
)
# apply batch operations
# apply batch operations
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
...
model_zoo/official/cv/resnet_thor/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -47,10 +47,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
...
@@ -47,10 +47,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
num_parallels
=
4
num_parallels
=
4
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
num_parallels
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
num_parallels
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
num_parallels
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
num_parallels
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
image_size
=
224
image_size
=
224
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
...
@@ -86,6 +86,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
...
@@ -86,6 +86,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
return
ds
return
ds
def
_get_rank_info
():
def
_get_rank_info
():
"""
"""
get rank size and rank id
get rank size and rank id
...
...
model_zoo/official/cv/resnext50/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -134,9 +134,9 @@ def classification_dataset(data_dir, image_size, per_batch_size, max_epoch, rank
...
@@ -134,9 +134,9 @@ def classification_dataset(data_dir, image_size, per_batch_size, max_epoch, rank
transform_label
=
target_transform
transform_label
=
target_transform
if
input_mode
==
'folder'
:
if
input_mode
==
'folder'
:
de_dataset
=
de
.
ImageFolderDataset
V2
(
data_dir
,
num_parallel_workers
=
num_parallel_workers
,
de_dataset
=
de
.
ImageFolderDataset
(
data_dir
,
num_parallel_workers
=
num_parallel_workers
,
shuffle
=
shuffle
,
sampler
=
sampler
,
class_indexing
=
class_indexing
,
shuffle
=
shuffle
,
sampler
=
sampler
,
class_indexing
=
class_indexing
,
num_shards
=
group_size
,
shard_id
=
rank
)
num_shards
=
group_size
,
shard_id
=
rank
)
else
:
else
:
dataset
=
TxtDataset
(
root
,
data_dir
)
dataset
=
TxtDataset
(
root
,
data_dir
)
sampler
=
DistributedSampler
(
dataset
,
rank
,
group_size
,
shuffle
=
shuffle
)
sampler
=
DistributedSampler
(
dataset
,
rank
,
group_size
,
shuffle
=
shuffle
)
...
...
model_zoo/official/cv/shufflenetv2/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -30,6 +30,7 @@ class toBGR():
...
@@ -30,6 +30,7 @@ class toBGR():
img
=
np
.
ascontiguousarray
(
img
)
img
=
np
.
ascontiguousarray
(
img
)
return
img
return
img
def
create_dataset
(
dataset_path
,
do_train
,
rank
,
group_size
,
repeat_num
=
1
):
def
create_dataset
(
dataset_path
,
do_train
,
rank
,
group_size
,
repeat_num
=
1
):
"""
"""
create a train or eval dataset
create a train or eval dataset
...
@@ -45,23 +46,23 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
...
@@ -45,23 +46,23 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
dataset
dataset
"""
"""
if
group_size
==
1
:
if
group_size
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
cfg
.
work_nums
,
shuffle
=
True
,
num_shards
=
group_size
,
shard_id
=
rank
)
num_shards
=
group_size
,
shard_id
=
rank
)
# define map operations
# define map operations
if
do_train
:
if
do_train
:
trans
=
[
trans
=
[
C
.
RandomCropDecodeResize
(
224
),
C
.
RandomCropDecodeResize
(
224
),
C
.
RandomHorizontalFlip
(
prob
=
0.5
),
C
.
RandomHorizontalFlip
(
prob
=
0.5
),
C
.
RandomColorAdjust
(
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
)
C
.
RandomColorAdjust
(
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
)
]
]
else
:
else
:
trans
=
[
trans
=
[
C
.
Decode
(),
C
.
Decode
(),
C
.
Resize
(
256
),
C
.
Resize
(
256
),
C
.
CenterCrop
(
224
)
C
.
CenterCrop
(
224
)
]
]
trans
+=
[
trans
+=
[
toBGR
(),
toBGR
(),
C
.
Rescale
(
1.0
/
255.0
,
0.0
),
C
.
Rescale
(
1.0
/
255.0
,
0.0
),
...
...
model_zoo/official/cv/ssd/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -403,7 +403,7 @@ def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num
...
@@ -403,7 +403,7 @@ def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num
output_columns
=
[
"img_id"
,
"image"
,
"image_shape"
]
output_columns
=
[
"img_id"
,
"image"
,
"image_shape"
]
trans
=
[
normalize_op
,
change_swap_op
]
trans
=
[
normalize_op
,
change_swap_op
]
ds
=
ds
.
map
(
input_columns
=
[
"img_id"
,
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"img_id"
,
"image"
,
"annotation"
],
output_columns
=
output_columns
,
column
s
_order
=
output_columns
,
output_columns
=
output_columns
,
column_order
=
output_columns
,
operations
=
compose_map_func
,
python_multiprocessing
=
is_training
,
operations
=
compose_map_func
,
python_multiprocessing
=
is_training
,
num_parallel_workers
=
num_parallel_workers
)
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
trans
,
python_multiprocessing
=
is_training
,
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
trans
,
python_multiprocessing
=
is_training
,
...
...
model_zoo/official/cv/vgg16/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -149,9 +149,9 @@ def classification_dataset(data_dir, image_size, per_batch_size, rank=0, group_s
...
@@ -149,9 +149,9 @@ def classification_dataset(data_dir, image_size, per_batch_size, rank=0, group_s
transform_label
=
target_transform
transform_label
=
target_transform
if
input_mode
==
'folder'
:
if
input_mode
==
'folder'
:
de_dataset
=
de
.
ImageFolderDataset
V2
(
data_dir
,
num_parallel_workers
=
num_parallel_workers
,
de_dataset
=
de
.
ImageFolderDataset
(
data_dir
,
num_parallel_workers
=
num_parallel_workers
,
shuffle
=
shuffle
,
sampler
=
sampler
,
class_indexing
=
class_indexing
,
shuffle
=
shuffle
,
sampler
=
sampler
,
class_indexing
=
class_indexing
,
num_shards
=
group_size
,
shard_id
=
rank
)
num_shards
=
group_size
,
shard_id
=
rank
)
else
:
else
:
dataset
=
TxtDataset
(
root
,
data_dir
)
dataset
=
TxtDataset
(
root
,
data_dir
)
sampler
=
DistributedSampler
(
dataset
,
rank
,
group_size
,
shuffle
=
shuffle
)
sampler
=
DistributedSampler
(
dataset
,
rank
,
group_size
,
shuffle
=
shuffle
)
...
...
model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py
浏览文件 @
c45f79d3
...
@@ -178,7 +178,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num,
...
@@ -178,7 +178,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num,
compose_map_func
=
(
lambda
image
,
img_id
:
reshape_fn
(
image
,
img_id
,
config
))
compose_map_func
=
(
lambda
image
,
img_id
:
reshape_fn
(
image
,
img_id
,
config
))
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"img_id"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"img_id"
],
output_columns
=
[
"image"
,
"image_shape"
,
"img_id"
],
output_columns
=
[
"image"
,
"image_shape"
,
"img_id"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"img_id"
],
column_order
=
[
"image"
,
"image_shape"
,
"img_id"
],
operations
=
compose_map_func
,
num_parallel_workers
=
8
)
operations
=
compose_map_func
,
num_parallel_workers
=
8
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
8
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
8
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
...
model_zoo/official/cv/yolov3_darknet53_quant/src/yolo_dataset.py
浏览文件 @
c45f79d3
...
@@ -175,7 +175,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num,
...
@@ -175,7 +175,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num,
compose_map_func
=
(
lambda
image
,
img_id
:
reshape_fn
(
image
,
img_id
,
config
))
compose_map_func
=
(
lambda
image
,
img_id
:
reshape_fn
(
image
,
img_id
,
config
))
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"img_id"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"img_id"
],
output_columns
=
[
"image"
,
"image_shape"
,
"img_id"
],
output_columns
=
[
"image"
,
"image_shape"
,
"img_id"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"img_id"
],
column_order
=
[
"image"
,
"image_shape"
,
"img_id"
],
operations
=
compose_map_func
,
num_parallel_workers
=
8
)
operations
=
compose_map_func
,
num_parallel_workers
=
8
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
8
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
8
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
...
model_zoo/official/cv/yolov3_resnet18/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -303,7 +303,7 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=1, device_num=
...
@@ -303,7 +303,7 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=1, device_num=
hwc_to_chw
=
C
.
HWC2CHW
()
hwc_to_chw
=
C
.
HWC2CHW
()
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
output_columns
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
column
s
_order
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
column_order
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
@@ -311,6 +311,6 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=1, device_num=
...
@@ -311,6 +311,6 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=1, device_num=
else
:
else
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"annotation"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"annotation"
],
column_order
=
[
"image"
,
"image_shape"
,
"annotation"
],
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
return
ds
return
ds
model_zoo/official/nlp/bert/src/clue_classification_dataset_process.py
浏览文件 @
c45f79d3
...
@@ -43,7 +43,7 @@ def process_tnews_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
...
@@ -43,7 +43,7 @@ def process_tnews_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
### Processing label
### Processing label
if
data_usage
==
'test'
:
if
data_usage
==
'test'
:
dataset
=
dataset
.
map
(
input_columns
=
[
"id"
],
output_columns
=
[
"id"
,
"label_id"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"id"
],
output_columns
=
[
"id"
,
"label_id"
],
column
s
_order
=
[
"id"
,
"label_id"
,
"sentence"
],
operations
=
ops
.
Duplicate
())
column_order
=
[
"id"
,
"label_id"
,
"sentence"
],
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"label_id"
],
operations
=
ops
.
Fill
(
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"label_id"
],
operations
=
ops
.
Fill
(
0
))
else
:
else
:
label_vocab
=
text
.
Vocab
.
from_list
(
label_list
)
label_vocab
=
text
.
Vocab
.
from_list
(
label_list
)
...
@@ -61,10 +61,10 @@ def process_tnews_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
...
@@ -61,10 +61,10 @@ def process_tnews_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence"
],
output_columns
=
[
"text_ids"
],
operations
=
lookup
)
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence"
],
output_columns
=
[
"text_ids"
],
operations
=
lookup
)
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
operations
=
ops
.
PadEnd
([
max_seq_len
],
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
operations
=
ops
.
PadEnd
([
max_seq_len
],
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
output_columns
=
[
"text_ids"
,
"mask_ids"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
output_columns
=
[
"text_ids"
,
"mask_ids"
],
column
s
_order
=
[
"text_ids"
,
"mask_ids"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
column_order
=
[
"text_ids"
,
"mask_ids"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"mask_ids"
],
operations
=
ops
.
Mask
(
ops
.
Relational
.
NE
,
0
,
mstype
.
int32
))
dataset
=
dataset
.
map
(
input_columns
=
[
"mask_ids"
],
operations
=
ops
.
Mask
(
ops
.
Relational
.
NE
,
0
,
mstype
.
int32
))
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
output_columns
=
[
"text_ids"
,
"segment_ids"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
output_columns
=
[
"text_ids"
,
"segment_ids"
],
column
s
_order
=
[
"text_ids"
,
"mask_ids"
,
"segment_ids"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
column_order
=
[
"text_ids"
,
"mask_ids"
,
"segment_ids"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"segment_ids"
],
operations
=
ops
.
Fill
(
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"segment_ids"
],
operations
=
ops
.
Fill
(
0
))
dataset
=
dataset
.
batch
(
batch_size
,
drop_remainder
=
drop_remainder
)
dataset
=
dataset
.
batch
(
batch_size
,
drop_remainder
=
drop_remainder
)
return
dataset
return
dataset
...
@@ -87,7 +87,7 @@ def process_cmnli_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
...
@@ -87,7 +87,7 @@ def process_cmnli_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
### Processing label
### Processing label
if
data_usage
==
'test'
:
if
data_usage
==
'test'
:
dataset
=
dataset
.
map
(
input_columns
=
[
"id"
],
output_columns
=
[
"id"
,
"label_id"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"id"
],
output_columns
=
[
"id"
,
"label_id"
],
column
s
_order
=
[
"id"
,
"label_id"
,
"sentence1"
,
"sentence2"
],
operations
=
ops
.
Duplicate
())
column_order
=
[
"id"
,
"label_id"
,
"sentence1"
,
"sentence2"
],
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"label_id"
],
operations
=
ops
.
Fill
(
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"label_id"
],
operations
=
ops
.
Fill
(
0
))
else
:
else
:
label_vocab
=
text
.
Vocab
.
from_list
(
label_list
)
label_vocab
=
text
.
Vocab
.
from_list
(
label_list
)
...
@@ -110,26 +110,26 @@ def process_cmnli_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
...
@@ -110,26 +110,26 @@ def process_cmnli_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage
operations
=
ops
.
Concatenate
(
append
=
np
.
array
([
"[SEP]"
],
dtype
=
'S'
)))
operations
=
ops
.
Concatenate
(
append
=
np
.
array
([
"[SEP]"
],
dtype
=
'S'
)))
### Generating segment_ids
### Generating segment_ids
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence1"
],
output_columns
=
[
"sentence1"
,
"type_sentence1"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence1"
],
output_columns
=
[
"sentence1"
,
"type_sentence1"
],
column
s
_order
=
[
"sentence1"
,
"type_sentence1"
,
"sentence2"
,
"label_id"
],
column_order
=
[
"sentence1"
,
"type_sentence1"
,
"sentence2"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence2"
],
output_columns
=
[
"sentence2"
,
"type_sentence2"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence2"
],
output_columns
=
[
"sentence2"
,
"type_sentence2"
],
column
s
_order
=
[
"sentence1"
,
"type_sentence1"
,
"sentence2"
,
"type_sentence2"
,
"label_id"
],
column_order
=
[
"sentence1"
,
"type_sentence1"
,
"sentence2"
,
"type_sentence2"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"type_sentence1"
],
operations
=
[
lookup
,
ops
.
Fill
(
0
)])
dataset
=
dataset
.
map
(
input_columns
=
[
"type_sentence1"
],
operations
=
[
lookup
,
ops
.
Fill
(
0
)])
dataset
=
dataset
.
map
(
input_columns
=
[
"type_sentence2"
],
operations
=
[
lookup
,
ops
.
Fill
(
1
)])
dataset
=
dataset
.
map
(
input_columns
=
[
"type_sentence2"
],
operations
=
[
lookup
,
ops
.
Fill
(
1
)])
dataset
=
dataset
.
map
(
input_columns
=
[
"type_sentence1"
,
"type_sentence2"
],
output_columns
=
[
"segment_ids"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"type_sentence1"
,
"type_sentence2"
],
output_columns
=
[
"segment_ids"
],
column
s
_order
=
[
"sentence1"
,
"sentence2"
,
"segment_ids"
,
"label_id"
],
column_order
=
[
"sentence1"
,
"sentence2"
,
"segment_ids"
,
"label_id"
],
operations
=
ops
.
Concatenate
())
operations
=
ops
.
Concatenate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"segment_ids"
],
operations
=
ops
.
PadEnd
([
max_seq_len
],
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"segment_ids"
],
operations
=
ops
.
PadEnd
([
max_seq_len
],
0
))
### Generating text_ids
### Generating text_ids
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence1"
,
"sentence2"
],
output_columns
=
[
"text_ids"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"sentence1"
,
"sentence2"
],
output_columns
=
[
"text_ids"
],
column
s
_order
=
[
"text_ids"
,
"segment_ids"
,
"label_id"
],
column_order
=
[
"text_ids"
,
"segment_ids"
,
"label_id"
],
operations
=
ops
.
Concatenate
())
operations
=
ops
.
Concatenate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
operations
=
lookup
)
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
operations
=
lookup
)
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
operations
=
ops
.
PadEnd
([
max_seq_len
],
0
))
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
operations
=
ops
.
PadEnd
([
max_seq_len
],
0
))
### Generating mask_ids
### Generating mask_ids
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
output_columns
=
[
"text_ids"
,
"mask_ids"
],
dataset
=
dataset
.
map
(
input_columns
=
[
"text_ids"
],
output_columns
=
[
"text_ids"
,
"mask_ids"
],
column
s
_order
=
[
"text_ids"
,
"mask_ids"
,
"segment_ids"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
column_order
=
[
"text_ids"
,
"mask_ids"
,
"segment_ids"
,
"label_id"
],
operations
=
ops
.
Duplicate
())
dataset
=
dataset
.
map
(
input_columns
=
[
"mask_ids"
],
operations
=
ops
.
Mask
(
ops
.
Relational
.
NE
,
0
,
mstype
.
int32
))
dataset
=
dataset
.
map
(
input_columns
=
[
"mask_ids"
],
operations
=
ops
.
Mask
(
ops
.
Relational
.
NE
,
0
,
mstype
.
int32
))
dataset
=
dataset
.
batch
(
batch_size
,
drop_remainder
=
drop_remainder
)
dataset
=
dataset
.
batch
(
batch_size
,
drop_remainder
=
drop_remainder
)
return
dataset
return
dataset
model_zoo/official/recommend/deepfm/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -213,7 +213,7 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
...
@@ -213,7 +213,7 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column
s
_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
num_parallel_workers
=
8
)
ds
=
ds
.
repeat
(
epochs
)
ds
=
ds
.
repeat
(
epochs
)
return
ds
return
ds
...
@@ -261,7 +261,7 @@ def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
...
@@ -261,7 +261,7 @@ def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column
s
_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
num_parallel_workers
=
8
)
ds
=
ds
.
repeat
(
epochs
)
ds
=
ds
.
repeat
(
epochs
)
return
ds
return
ds
...
...
model_zoo/official/recommend/wide_and_deep/src/datasets.py
浏览文件 @
c45f79d3
...
@@ -230,7 +230,7 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
...
@@ -230,7 +230,7 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
ds
=
ds
.
map
(
operations
=
_padding_func
(
batch_size
,
manual_shape
,
target_column
),
ds
=
ds
.
map
(
operations
=
_padding_func
(
batch_size
,
manual_shape
,
target_column
),
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column
s
_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
column_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
# if train_mode:
# if train_mode:
ds
=
ds
.
repeat
(
epochs
)
ds
=
ds
.
repeat
(
epochs
)
return
ds
return
ds
...
@@ -270,7 +270,7 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
...
@@ -270,7 +270,7 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
ds
=
ds
.
batch
(
int
(
batch_size
/
line_per_sample
),
drop_remainder
=
True
)
ds
=
ds
.
batch
(
int
(
batch_size
/
line_per_sample
),
drop_remainder
=
True
)
ds
=
ds
.
map
(
_padding_func
(
batch_size
,
manual_shape
,
target_column
),
ds
=
ds
.
map
(
_padding_func
(
batch_size
,
manual_shape
,
target_column
),
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column
s
_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
num_parallel_workers
=
8
)
ds
=
ds
.
repeat
(
epochs
)
ds
=
ds
.
repeat
(
epochs
)
return
ds
return
ds
...
...
model_zoo/official/recommend/wide_and_deep_multitable/src/datasets.py
浏览文件 @
c45f79d3
...
@@ -263,7 +263,7 @@ def _get_tf_dataset(data_dir,
...
@@ -263,7 +263,7 @@ def _get_tf_dataset(data_dir,
'multi_doc_ad_topic_id_mask'
,
'ad_id'
,
'display_ad_and_is_leak'
,
'multi_doc_ad_topic_id_mask'
,
'ad_id'
,
'display_ad_and_is_leak'
,
'display_id'
,
'is_leak'
'display_id'
,
'is_leak'
],
],
column
s
_order
=
[
column_order
=
[
'label'
,
'continue_val'
,
'indicator_id'
,
'emb_128_id'
,
'label'
,
'continue_val'
,
'indicator_id'
,
'emb_128_id'
,
'emb_64_single_id'
,
'multi_doc_ad_category_id'
,
'emb_64_single_id'
,
'multi_doc_ad_category_id'
,
'multi_doc_ad_category_id_mask'
,
'multi_doc_event_entity_id'
,
'multi_doc_ad_category_id_mask'
,
'multi_doc_event_entity_id'
,
...
...
tests/st/mem_reuse/resnet_cifar_memreuse.py
浏览文件 @
c45f79d3
...
@@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
...
@@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
import
mindspore.context
as
context
import
mindspore.context
as
context
import
mindspore.dataset
as
de
import
mindspore.dataset
as
de
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore.communication.management
import
init
from
mindspore.communication.management
import
init
...
...
tests/st/mem_reuse/resnet_cifar_normal.py
浏览文件 @
c45f79d3
...
@@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
...
@@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
import
mindspore.context
as
context
import
mindspore.context
as
context
import
mindspore.dataset
as
de
import
mindspore.dataset
as
de
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore.communication.management
import
init
from
mindspore.communication.management
import
init
...
...
tests/st/model_zoo_tests/wide_and_deep/python_file_for_ci/datasets.py
浏览文件 @
c45f79d3
...
@@ -57,7 +57,7 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
...
@@ -57,7 +57,7 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column
s
_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
column_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
#if train_mode:
#if train_mode:
ds
=
ds
.
repeat
(
epochs
)
ds
=
ds
.
repeat
(
epochs
)
return
ds
return
ds
...
@@ -97,7 +97,7 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
...
@@ -97,7 +97,7 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
y
).
flatten
().
reshape
(
batch_size
,
39
),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
np
.
array
(
z
).
flatten
().
reshape
(
batch_size
,
1
))),
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
input_columns
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column
s
_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
column_order
=
[
'feat_ids'
,
'feat_vals'
,
'label'
],
num_parallel_workers
=
8
)
num_parallel_workers
=
8
)
ds
=
ds
.
repeat
(
epochs
)
ds
=
ds
.
repeat
(
epochs
)
return
ds
return
ds
...
...
tests/st/model_zoo_tests/yolov3/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -22,7 +22,7 @@ from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
...
@@ -22,7 +22,7 @@ from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from
PIL
import
Image
from
PIL
import
Image
import
mindspore.dataset
as
de
import
mindspore.dataset
as
de
from
mindspore.mindrecord
import
FileWriter
from
mindspore.mindrecord
import
FileWriter
import
mindspore.dataset.
transforms.
vision.c_transforms
as
C
import
mindspore.dataset.vision.c_transforms
as
C
from
src.config
import
ConfigYOLOV3ResNet18
from
src.config
import
ConfigYOLOV3ResNet18
iter_cnt
=
0
iter_cnt
=
0
...
@@ -305,7 +305,7 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=10, device_num
...
@@ -305,7 +305,7 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=10, device_num
hwc_to_chw
=
C
.
HWC2CHW
()
hwc_to_chw
=
C
.
HWC2CHW
()
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
output_columns
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
column
s
_order
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
column_order
=
[
"image"
,
"bbox_1"
,
"bbox_2"
,
"bbox_3"
,
"gt_box1"
,
"gt_box2"
,
"gt_box3"
],
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
hwc_to_chw
,
num_parallel_workers
=
num_parallel_workers
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds
=
ds
.
batch
(
batch_size
,
drop_remainder
=
True
)
...
@@ -313,6 +313,6 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=10, device_num
...
@@ -313,6 +313,6 @@ def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=10, device_num
else
:
else
:
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"annotation"
],
output_columns
=
[
"image"
,
"image_shape"
,
"annotation"
],
column
s
_order
=
[
"image"
,
"image_shape"
,
"annotation"
],
column_order
=
[
"image"
,
"image_shape"
,
"annotation"
],
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
operations
=
compose_map_func
,
num_parallel_workers
=
num_parallel_workers
)
return
ds
return
ds
tests/st/networks/models/deeplabv3/src/md_dataset.py
浏览文件 @
c45f79d3
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
"""Dataset module."""
"""Dataset module."""
from
PIL
import
Image
from
PIL
import
Image
import
mindspore.dataset
as
de
import
mindspore.dataset
as
de
import
mindspore.dataset.
transforms.
vision.c_transforms
as
C
import
mindspore.dataset.vision.c_transforms
as
C
import
numpy
as
np
import
numpy
as
np
from
.ei_dataset
import
HwVocRawDataset
from
.ei_dataset
import
HwVocRawDataset
...
...
tests/st/networks/models/resnet50/src/dataset.py
浏览文件 @
c45f79d3
...
@@ -18,7 +18,7 @@
...
@@ -18,7 +18,7 @@
import
os
import
os
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.
transforms.
vision.c_transforms
as
C
import
mindspore.dataset.vision.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.c_transforms
as
C2
...
@@ -39,10 +39,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
...
@@ -39,10 +39,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
device_num
=
int
(
os
.
getenv
(
"RANK_SIZE"
))
device_num
=
int
(
os
.
getenv
(
"RANK_SIZE"
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
))
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
image_size
=
224
image_size
=
224
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
...
...
tests/st/networks/models/resnet50/src_thor/dataset.py
浏览文件 @
c45f79d3
...
@@ -21,7 +21,7 @@ import mindspore.common.dtype as mstype
...
@@ -21,7 +21,7 @@ import mindspore.common.dtype as mstype
import
mindspore.dataset
as
dataset
import
mindspore.dataset
as
dataset
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.transforms.c_transforms
as
C2
import
mindspore.dataset.
transforms.
vision.c_transforms
as
C
import
mindspore.dataset.vision.c_transforms
as
C
dataset
.
config
.
set_seed
(
1
)
dataset
.
config
.
set_seed
(
1
)
...
@@ -43,10 +43,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
...
@@ -43,10 +43,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
device_num
=
int
(
os
.
getenv
(
"RANK_SIZE"
))
device_num
=
int
(
os
.
getenv
(
"RANK_SIZE"
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
))
rank_id
=
int
(
os
.
getenv
(
"RANK_ID"
))
if
device_num
==
1
:
if
device_num
==
1
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
)
else
:
else
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
ds
=
de
.
ImageFolderDataset
(
dataset_path
,
num_parallel_workers
=
8
,
shuffle
=
True
,
num_shards
=
device_num
,
shard_id
=
rank_id
)
num_shards
=
device_num
,
shard_id
=
rank_id
)
image_size
=
224
image_size
=
224
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
mean
=
[
0.485
*
255
,
0.456
*
255
,
0.406
*
255
]
...
...
tests/st/networks/test_gpu_lenet.py
浏览文件 @
c45f79d3
...
@@ -21,11 +21,11 @@ import pytest
...
@@ -21,11 +21,11 @@ import pytest
import
mindspore.context
as
context
import
mindspore.context
as
context
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.nn
import
Dense
,
TrainOneStepCell
,
WithLossCell
from
mindspore.nn
import
Dense
,
TrainOneStepCell
,
WithLossCell
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.optim
import
Momentum
from
mindspore.nn.optim
import
Momentum
...
...
tests/st/ops/ascend/test_tdt_data_ms.py
浏览文件 @
c45f79d3
...
@@ -17,11 +17,11 @@ import numpy as np
...
@@ -17,11 +17,11 @@ import numpy as np
import
mindspore.context
as
context
import
mindspore.context
as
context
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore.common.api
import
_executor
from
mindspore.common.api
import
_executor
from
mindspore.common.tensor
import
Tensor
from
mindspore.common.tensor
import
Tensor
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
...
@@ -83,8 +83,6 @@ if __name__ == '__main__':
...
@@ -83,8 +83,6 @@ if __name__ == '__main__':
class
dataiter
(
nn
.
Cell
):
class
dataiter
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
dataiter
,
self
).
__init__
()
def
construct
(
self
):
def
construct
(
self
):
input_
,
_
=
get_next
()
input_
,
_
=
get_next
()
...
...
tests/st/probability/dataset.py
浏览文件 @
c45f79d3
...
@@ -17,9 +17,9 @@ Produce the dataset
...
@@ -17,9 +17,9 @@ Produce the dataset
"""
"""
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
...
...
tests/st/probability/test_gpu_svi_cvae.py
浏览文件 @
c45f79d3
...
@@ -16,7 +16,7 @@ import os
...
@@ -16,7 +16,7 @@ import os
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
context
,
Tensor
from
mindspore
import
context
,
Tensor
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
...
...
tests/st/probability/test_gpu_svi_vae.py
浏览文件 @
c45f79d3
...
@@ -16,7 +16,7 @@ import os
...
@@ -16,7 +16,7 @@ import os
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
context
,
Tensor
from
mindspore
import
context
,
Tensor
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
...
...
tests/st/probability/test_gpu_vae_gan.py
浏览文件 @
c45f79d3
...
@@ -18,7 +18,7 @@ The VAE interface can be called to construct VAE-GAN network.
...
@@ -18,7 +18,7 @@ The VAE interface can be called to construct VAE-GAN network.
import
os
import
os
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
...
...
tests/st/probability/test_uncertainty.py
浏览文件 @
c45f79d3
...
@@ -15,12 +15,12 @@
...
@@ -15,12 +15,12 @@
""" test uncertainty toolbox """
""" test uncertainty toolbox """
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
context
,
Tensor
from
mindspore
import
context
,
Tensor
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common.initializer
import
TruncatedNormal
from
mindspore.common.initializer
import
TruncatedNormal
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.nn.probability.toolbox.uncertainty_evaluation
import
UncertaintyEvaluation
from
mindspore.nn.probability.toolbox.uncertainty_evaluation
import
UncertaintyEvaluation
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
...
...
tests/st/ps/full_ps/test_full_ps_lenet.py
浏览文件 @
c45f79d3
...
@@ -19,10 +19,10 @@ import argparse
...
@@ -19,10 +19,10 @@ import argparse
import
mindspore.context
as
context
import
mindspore.context
as
context
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.train
import
Model
from
mindspore.train
import
Model
from
mindspore.train.callback
import
LossMonitor
from
mindspore.train.callback
import
LossMonitor
...
...
tests/st/pynative/test_pynative_resnet50.py
浏览文件 @
c45f79d3
...
@@ -21,7 +21,7 @@ import pytest
...
@@ -21,7 +21,7 @@ import pytest
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.ops.functional
as
F
import
mindspore.ops.functional
as
F
...
...
tests/st/quantization/lenet_quant/dataset.py
浏览文件 @
c45f79d3
...
@@ -17,9 +17,9 @@ Produce the dataset
...
@@ -17,9 +17,9 @@ Produce the dataset
"""
"""
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
CV
import
mindspore.dataset.vision.c_transforms
as
CV
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
...
...
tests/st/summary/test_summary.py
浏览文件 @
c45f79d3
...
@@ -25,8 +25,8 @@ from mindspore import nn, Tensor, context
...
@@ -25,8 +25,8 @@ from mindspore import nn, Tensor, context
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.optim
import
Momentum
from
mindspore.nn.optim
import
Momentum
from
mindspore.dataset.transforms
import
c_transforms
as
C
from
mindspore.dataset.transforms
import
c_transforms
as
C
from
mindspore.dataset.
transforms.
vision
import
c_transforms
as
CV
from
mindspore.dataset.vision
import
c_transforms
as
CV
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common.initializer
import
TruncatedNormal
from
mindspore.common.initializer
import
TruncatedNormal
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
...
...
tests/st/tbe_networks/resnet_cifar.py
浏览文件 @
c45f79d3
...
@@ -24,7 +24,7 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni
...
@@ -24,7 +24,7 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore
import
context
...
...
tests/st/tbe_networks/test_resnet_cifar_1p.py
浏览文件 @
c45f79d3
...
@@ -21,7 +21,7 @@ from resnet import resnet50
...
@@ -21,7 +21,7 @@ from resnet import resnet50
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.ops.functional
as
F
import
mindspore.ops.functional
as
F
from
mindspore
import
Tensor
from
mindspore
import
Tensor
...
...
tests/st/tbe_networks/test_resnet_cifar_8p.py
浏览文件 @
c45f79d3
...
@@ -22,7 +22,7 @@ from resnet import resnet50
...
@@ -22,7 +22,7 @@ from resnet import resnet50
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.ops.functional
as
F
import
mindspore.ops.functional
as
F
from
mindspore
import
Tensor
from
mindspore
import
Tensor
...
...
tests/ut/python/dataset/test_HWC2CHW.py
浏览文件 @
c45f79d3
...
@@ -17,8 +17,9 @@ Testing HWC2CHW op in DE
...
@@ -17,8 +17,9 @@ Testing HWC2CHW op in DE
"""
"""
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.c_transforms
as
c_vision
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.py_transforms
as
py_vision
import
mindspore.dataset.vision.c_transforms
as
c_vision
import
mindspore.dataset.vision.py_transforms
as
py_vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
diff_mse
,
visualize_list
,
save_and_check_md5
from
util
import
diff_mse
,
visualize_list
,
save_and_check_md5
...
@@ -99,8 +100,8 @@ def test_HWC2CHW_comp(plot=False):
...
@@ -99,8 +100,8 @@ def test_HWC2CHW_comp(plot=False):
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
py_vision
.
HWC2CHW
()
py_vision
.
HWC2CHW
()
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
image_c_transposed
=
[]
image_c_transposed
=
[]
image_py_transposed
=
[]
image_py_transposed
=
[]
...
...
tests/ut/python/dataset/test_apply.py
浏览文件 @
c45f79d3
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
DATA_DIR
=
"../data/dataset/testPK/data"
DATA_DIR
=
"../data/dataset/testPK/data"
...
@@ -46,8 +46,8 @@ def test_apply_generator_case():
...
@@ -46,8 +46,8 @@ def test_apply_generator_case():
def
test_apply_imagefolder_case
():
def
test_apply_imagefolder_case
():
# apply dataset map operations
# apply dataset map operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
3
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
3
)
data2
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
3
)
data2
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
3
)
decode_op
=
vision
.
Decode
()
decode_op
=
vision
.
Decode
()
normalize_op
=
vision
.
Normalize
([
121.0
,
115.0
,
100.0
],
[
70.0
,
68.0
,
71.0
])
normalize_op
=
vision
.
Normalize
([
121.0
,
115.0
,
100.0
],
[
70.0
,
68.0
,
71.0
])
...
...
tests/ut/python/dataset/test_autocontrast.py
浏览文件 @
c45f79d3
...
@@ -17,8 +17,9 @@ Testing AutoContrast op in DE
...
@@ -17,8 +17,9 @@ Testing AutoContrast op in DE
"""
"""
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.transforms.vision.py_transforms
as
F
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.vision.py_transforms
as
F
import
mindspore.dataset.vision.c_transforms
as
C
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
visualize_list
,
visualize_one_channel_dataset
,
diff_mse
,
save_and_check_md5
from
util
import
visualize_list
,
visualize_one_channel_dataset
,
diff_mse
,
save_and_check_md5
...
@@ -35,14 +36,14 @@ def test_auto_contrast_py(plot=False):
...
@@ -35,14 +36,14 @@ def test_auto_contrast_py(plot=False):
logger
.
info
(
"Test AutoContrast Python Op"
)
logger
.
info
(
"Test AutoContrast Python Op"
)
# Original Images
# Original Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_original
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_original
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
ToTensor
()])
F
.
ToTensor
()])
ds_original
=
ds
.
map
(
input_columns
=
"image"
,
ds_original
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_original
()
)
operations
=
transforms_original
)
ds_original
=
ds_original
.
batch
(
512
)
ds_original
=
ds_original
.
batch
(
512
)
...
@@ -55,15 +56,16 @@ def test_auto_contrast_py(plot=False):
...
@@ -55,15 +56,16 @@ def test_auto_contrast_py(plot=False):
axis
=
0
)
axis
=
0
)
# AutoContrast Images
# AutoContrast Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_auto_contrast
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_auto_contrast
=
\
F
.
Resize
((
224
,
224
)),
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
AutoContrast
(
cutoff
=
10.0
,
ignore
=
[
10
,
20
]),
F
.
Resize
((
224
,
224
)),
F
.
ToTensor
()])
F
.
AutoContrast
(
cutoff
=
10.0
,
ignore
=
[
10
,
20
]),
F
.
ToTensor
()])
ds_auto_contrast
=
ds
.
map
(
input_columns
=
"image"
,
ds_auto_contrast
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_auto_contrast
()
)
operations
=
transforms_auto_contrast
)
ds_auto_contrast
=
ds_auto_contrast
.
batch
(
512
)
ds_auto_contrast
=
ds_auto_contrast
.
batch
(
512
)
...
@@ -96,15 +98,15 @@ def test_auto_contrast_c(plot=False):
...
@@ -96,15 +98,15 @@ def test_auto_contrast_c(plot=False):
logger
.
info
(
"Test AutoContrast C Op"
)
logger
.
info
(
"Test AutoContrast C Op"
)
# AutoContrast Images
# AutoContrast Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
C
.
Resize
((
224
,
224
))])
python_op
=
F
.
AutoContrast
(
cutoff
=
10.0
,
ignore
=
[
10
,
20
])
python_op
=
F
.
AutoContrast
(
cutoff
=
10.0
,
ignore
=
[
10
,
20
])
c_op
=
C
.
AutoContrast
(
cutoff
=
10.0
,
ignore
=
[
10
,
20
])
c_op
=
C
.
AutoContrast
(
cutoff
=
10.0
,
ignore
=
[
10
,
20
])
transforms_op
=
F
.
ComposeOp
([
lambda
img
:
F
.
ToPIL
()(
img
.
astype
(
np
.
uint8
)),
transforms_op
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
lambda
img
:
F
.
ToPIL
()(
img
.
astype
(
np
.
uint8
)),
python_op
,
python_op
,
np
.
array
])(
)
np
.
array
]
)
ds_auto_contrast_py
=
ds
.
map
(
input_columns
=
"image"
,
ds_auto_contrast_py
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_op
)
operations
=
transforms_op
)
...
@@ -119,7 +121,7 @@ def test_auto_contrast_c(plot=False):
...
@@ -119,7 +121,7 @@ def test_auto_contrast_c(plot=False):
image
,
image
,
axis
=
0
)
axis
=
0
)
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
C
.
Resize
((
224
,
224
))])
...
@@ -159,17 +161,18 @@ def test_auto_contrast_one_channel_c(plot=False):
...
@@ -159,17 +161,18 @@ def test_auto_contrast_one_channel_c(plot=False):
logger
.
info
(
"Test AutoContrast C Op With One Channel Images"
)
logger
.
info
(
"Test AutoContrast C Op With One Channel Images"
)
# AutoContrast Images
# AutoContrast Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
C
.
Resize
((
224
,
224
))])
python_op
=
F
.
AutoContrast
()
python_op
=
F
.
AutoContrast
()
c_op
=
C
.
AutoContrast
()
c_op
=
C
.
AutoContrast
()
# not using F.ToTensor() since it converts to floats
# not using F.ToTensor() since it converts to floats
transforms_op
=
F
.
ComposeOp
([
lambda
img
:
(
np
.
array
(
img
)[:,
:,
0
]).
astype
(
np
.
uint8
),
transforms_op
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
F
.
ToPIL
(),
[
lambda
img
:
(
np
.
array
(
img
)[:,
:,
0
]).
astype
(
np
.
uint8
),
python_op
,
F
.
ToPIL
(),
np
.
array
])()
python_op
,
np
.
array
])
ds_auto_contrast_py
=
ds
.
map
(
input_columns
=
"image"
,
ds_auto_contrast_py
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_op
)
operations
=
transforms_op
)
...
@@ -184,7 +187,7 @@ def test_auto_contrast_one_channel_c(plot=False):
...
@@ -184,7 +187,7 @@ def test_auto_contrast_one_channel_c(plot=False):
image
,
image
,
axis
=
0
)
axis
=
0
)
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -248,7 +251,7 @@ def test_auto_contrast_invalid_ignore_param_c():
...
@@ -248,7 +251,7 @@ def test_auto_contrast_invalid_ignore_param_c():
"""
"""
logger
.
info
(
"Test AutoContrast C Op with invalid ignore parameter"
)
logger
.
info
(
"Test AutoContrast C Op with invalid ignore parameter"
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -260,7 +263,7 @@ def test_auto_contrast_invalid_ignore_param_c():
...
@@ -260,7 +263,7 @@ def test_auto_contrast_invalid_ignore_param_c():
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
assert
"Argument ignore with value 255.5 is not of type"
in
str
(
error
)
assert
"Argument ignore with value 255.5 is not of type"
in
str
(
error
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -279,7 +282,7 @@ def test_auto_contrast_invalid_cutoff_param_c():
...
@@ -279,7 +282,7 @@ def test_auto_contrast_invalid_cutoff_param_c():
"""
"""
logger
.
info
(
"Test AutoContrast C Op with invalid cutoff parameter"
)
logger
.
info
(
"Test AutoContrast C Op with invalid cutoff parameter"
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -291,7 +294,7 @@ def test_auto_contrast_invalid_cutoff_param_c():
...
@@ -291,7 +294,7 @@ def test_auto_contrast_invalid_cutoff_param_c():
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
assert
"Input cutoff is not within the required interval of (0 to 100)."
in
str
(
error
)
assert
"Input cutoff is not within the required interval of (0 to 100)."
in
str
(
error
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -310,22 +313,22 @@ def test_auto_contrast_invalid_ignore_param_py():
...
@@ -310,22 +313,22 @@ def test_auto_contrast_invalid_ignore_param_py():
"""
"""
logger
.
info
(
"Test AutoContrast python Op with invalid ignore parameter"
)
logger
.
info
(
"Test AutoContrast python Op with invalid ignore parameter"
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
F
.
ComposeOp
([
F
.
Decode
(),
operations
=
[
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
AutoContrast
(
ignore
=
255.5
),
F
.
AutoContrast
(
ignore
=
255.5
),
F
.
ToTensor
()])])
F
.
ToTensor
()])])
except
TypeError
as
error
:
except
TypeError
as
error
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
assert
"Argument ignore with value 255.5 is not of type"
in
str
(
error
)
assert
"Argument ignore with value 255.5 is not of type"
in
str
(
error
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
F
.
ComposeOp
([
F
.
Decode
(),
operations
=
[
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
AutoContrast
(
ignore
=
(
10
,
100
)),
F
.
AutoContrast
(
ignore
=
(
10
,
100
)),
F
.
ToTensor
()])])
F
.
ToTensor
()])])
except
TypeError
as
error
:
except
TypeError
as
error
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
assert
"Argument ignore with value (10,100) is not of type"
in
str
(
error
)
assert
"Argument ignore with value (10,100) is not of type"
in
str
(
error
)
...
@@ -337,22 +340,22 @@ def test_auto_contrast_invalid_cutoff_param_py():
...
@@ -337,22 +340,22 @@ def test_auto_contrast_invalid_cutoff_param_py():
"""
"""
logger
.
info
(
"Test AutoContrast python Op with invalid cutoff parameter"
)
logger
.
info
(
"Test AutoContrast python Op with invalid cutoff parameter"
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
F
.
ComposeOp
([
F
.
Decode
(),
operations
=
[
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
AutoContrast
(
cutoff
=-
10.0
),
F
.
AutoContrast
(
cutoff
=-
10.0
),
F
.
ToTensor
()])])
F
.
ToTensor
()])])
except
ValueError
as
error
:
except
ValueError
as
error
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
assert
"Input cutoff is not within the required interval of (0 to 100)."
in
str
(
error
)
assert
"Input cutoff is not within the required interval of (0 to 100)."
in
str
(
error
)
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
F
.
ComposeOp
([
F
.
Decode
(),
operations
=
[
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
AutoContrast
(
cutoff
=
120.0
),
F
.
AutoContrast
(
cutoff
=
120.0
),
F
.
ToTensor
()])])
F
.
ToTensor
()])])
except
ValueError
as
error
:
except
ValueError
as
error
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
assert
"Input cutoff is not within the required interval of (0 to 100)."
in
str
(
error
)
assert
"Input cutoff is not within the required interval of (0 to 100)."
in
str
(
error
)
...
...
tests/ut/python/dataset/test_batch.py
浏览文件 @
c45f79d3
...
@@ -449,6 +449,22 @@ def test_batch_exception_13():
...
@@ -449,6 +449,22 @@ def test_batch_exception_13():
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"shard_id"
in
str
(
e
)
assert
"shard_id"
in
str
(
e
)
# test non-functional parameters
try
:
data1
=
data1
.
batch
(
batch_size
,
output_columns
=
"3"
)
sum
([
1
for
_
in
data1
])
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"output_columns is currently not implemented."
in
str
(
e
)
try
:
data1
=
data1
.
batch
(
batch_size
,
column_order
=
"3"
)
sum
([
1
for
_
in
data1
])
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"column_order is currently not implemented."
in
str
(
e
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_batch_01
()
test_batch_01
()
...
...
tests/ut/python/dataset/test_bounding_box_augment.py
浏览文件 @
c45f79d3
...
@@ -19,7 +19,7 @@ Testing the bounding box augment op in DE
...
@@ -19,7 +19,7 @@ Testing the bounding box augment op in DE
import
numpy
as
np
import
numpy
as
np
import
mindspore.log
as
logger
import
mindspore.log
as
logger
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
c_vision
import
mindspore.dataset.vision.c_transforms
as
c_vision
from
util
import
visualize_with_bounding_boxes
,
InvalidBBoxType
,
check_bad_bbox
,
\
from
util
import
visualize_with_bounding_boxes
,
InvalidBBoxType
,
check_bad_bbox
,
\
config_get_set_seed
,
config_get_set_num_parallel_workers
,
save_and_check_md5
config_get_set_seed
,
config_get_set_num_parallel_workers
,
save_and_check_md5
...
@@ -51,7 +51,7 @@ def test_bounding_box_augment_with_rotation_op(plot_vis=False):
...
@@ -51,7 +51,7 @@ def test_bounding_box_augment_with_rotation_op(plot_vis=False):
# map to apply ops
# map to apply ops
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
[
test_op
])
operations
=
[
test_op
])
filename
=
"bounding_box_augment_rotation_c_result.npz"
filename
=
"bounding_box_augment_rotation_c_result.npz"
...
@@ -90,7 +90,7 @@ def test_bounding_box_augment_with_crop_op(plot_vis=False):
...
@@ -90,7 +90,7 @@ def test_bounding_box_augment_with_crop_op(plot_vis=False):
# map to apply ops
# map to apply ops
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
[
test_op
])
operations
=
[
test_op
])
filename
=
"bounding_box_augment_crop_c_result.npz"
filename
=
"bounding_box_augment_crop_c_result.npz"
...
@@ -128,7 +128,7 @@ def test_bounding_box_augment_valid_ratio_c(plot_vis=False):
...
@@ -128,7 +128,7 @@ def test_bounding_box_augment_valid_ratio_c(plot_vis=False):
# map to apply ops
# map to apply ops
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
[
test_op
])
# Add column for "bbox"
operations
=
[
test_op
])
# Add column for "bbox"
filename
=
"bounding_box_augment_valid_ratio_c_result.npz"
filename
=
"bounding_box_augment_valid_ratio_c_result.npz"
...
@@ -165,7 +165,7 @@ def test_bounding_box_augment_op_coco_c(plot_vis=False):
...
@@ -165,7 +165,7 @@ def test_bounding_box_augment_op_coco_c(plot_vis=False):
dataCoco2
=
dataCoco2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataCoco2
=
dataCoco2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
[
test_op
])
operations
=
[
test_op
])
unaugSamp
,
augSamp
=
[],
[]
unaugSamp
,
augSamp
=
[],
[]
...
@@ -197,17 +197,17 @@ def test_bounding_box_augment_valid_edge_c(plot_vis=False):
...
@@ -197,17 +197,17 @@ def test_bounding_box_augment_valid_edge_c(plot_vis=False):
# Add column for "bbox"
# Add column for "bbox"
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
lambda
img
,
bbox
:
operations
=
lambda
img
,
bbox
:
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
],
0
,
0
,
0
]]).
astype
(
np
.
float32
)))
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
],
0
,
0
,
0
]]).
astype
(
np
.
float32
)))
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
lambda
img
,
bbox
:
operations
=
lambda
img
,
bbox
:
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
],
0
,
0
,
0
]]).
astype
(
np
.
float32
)))
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
],
0
,
0
,
0
]]).
astype
(
np
.
float32
)))
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
[
test_op
])
operations
=
[
test_op
])
filename
=
"bounding_box_augment_valid_edge_c_result.npz"
filename
=
"bounding_box_augment_valid_edge_c_result.npz"
save_and_check_md5
(
dataVoc2
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
save_and_check_md5
(
dataVoc2
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
...
@@ -240,7 +240,7 @@ def test_bounding_box_augment_invalid_ratio_c():
...
@@ -240,7 +240,7 @@ def test_bounding_box_augment_invalid_ratio_c():
# map to apply ops
# map to apply ops
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
output_columns
=
[
"image"
,
"bbox"
],
column
s
_order
=
[
"image"
,
"bbox"
],
column_order
=
[
"image"
,
"bbox"
],
operations
=
[
test_op
])
# Add column for "bbox"
operations
=
[
test_op
])
# Add column for "bbox"
except
ValueError
as
error
:
except
ValueError
as
error
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
error
)))
...
...
tests/ut/python/dataset/test_cache_map.py
浏览文件 @
c45f79d3
...
@@ -18,7 +18,7 @@ Testing cache operator with mappable datasets
...
@@ -18,7 +18,7 @@ Testing cache operator with mappable datasets
import
os
import
os
import
pytest
import
pytest
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
c_vision
import
mindspore.dataset.vision.c_transforms
as
c_vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
save_and_check_md5
from
util
import
save_and_check_md5
...
@@ -46,7 +46,7 @@ def test_cache_map_basic1():
...
@@ -46,7 +46,7 @@ def test_cache_map_basic1():
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
# This DATA_DIR only has 2 images in it
# This DATA_DIR only has 2 images in it
ds1
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
cache
=
some_cache
)
ds1
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
cache
=
some_cache
)
decode_op
=
c_vision
.
Decode
()
decode_op
=
c_vision
.
Decode
()
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
)
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
repeat
(
4
)
...
@@ -75,7 +75,7 @@ def test_cache_map_basic2():
...
@@ -75,7 +75,7 @@ def test_cache_map_basic2():
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
# This DATA_DIR only has 2 images in it
# This DATA_DIR only has 2 images in it
ds1
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
)
ds1
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
)
decode_op
=
c_vision
.
Decode
()
decode_op
=
c_vision
.
Decode
()
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
,
cache
=
some_cache
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
,
cache
=
some_cache
)
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
repeat
(
4
)
...
@@ -104,7 +104,7 @@ def test_cache_map_basic3():
...
@@ -104,7 +104,7 @@ def test_cache_map_basic3():
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
# This DATA_DIR only has 2 images in it
# This DATA_DIR only has 2 images in it
ds1
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
)
ds1
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
)
decode_op
=
c_vision
.
Decode
()
decode_op
=
c_vision
.
Decode
()
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
,
cache
=
some_cache
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
,
cache
=
some_cache
)
...
@@ -128,7 +128,7 @@ def test_cache_map_basic4():
...
@@ -128,7 +128,7 @@ def test_cache_map_basic4():
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
# This DATA_DIR only has 2 images in it
# This DATA_DIR only has 2 images in it
ds1
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
cache
=
some_cache
)
ds1
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
cache
=
some_cache
)
decode_op
=
c_vision
.
Decode
()
decode_op
=
c_vision
.
Decode
()
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
)
...
@@ -165,7 +165,7 @@ def test_cache_map_failure1():
...
@@ -165,7 +165,7 @@ def test_cache_map_failure1():
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
some_cache
=
ds
.
DatasetCache
(
session_id
=
1
,
size
=
0
,
spilling
=
True
)
# This DATA_DIR only has 2 images in it
# This DATA_DIR only has 2 images in it
ds1
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
cache
=
some_cache
)
ds1
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
cache
=
some_cache
)
decode_op
=
c_vision
.
Decode
()
decode_op
=
c_vision
.
Decode
()
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
,
cache
=
some_cache
)
ds1
=
ds1
.
map
(
input_columns
=
[
"image"
],
operations
=
decode_op
,
cache
=
some_cache
)
ds1
=
ds1
.
repeat
(
4
)
ds1
=
ds1
.
repeat
(
4
)
...
...
tests/ut/python/dataset/test_cache_nomap.py
浏览文件 @
c45f79d3
...
@@ -19,7 +19,7 @@ import os
...
@@ -19,7 +19,7 @@ import os
import
pytest
import
pytest
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
c_vision
import
mindspore.dataset.vision.c_transforms
as
c_vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
...
...
tests/ut/python/dataset/test_center_crop.py
浏览文件 @
c45f79d3
...
@@ -17,8 +17,9 @@ Testing CenterCrop op in DE
...
@@ -17,8 +17,9 @@ Testing CenterCrop op in DE
"""
"""
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.c_transforms
as
vision
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.py_transforms
as
py_vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.dataset.vision.py_transforms
as
py_vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
diff_mse
,
visualize_list
,
save_and_check_md5
from
util
import
diff_mse
,
visualize_list
,
save_and_check_md5
...
@@ -93,8 +94,8 @@ def test_center_crop_comp(height=375, width=375, plot=False):
...
@@ -93,8 +94,8 @@ def test_center_crop_comp(height=375, width=375, plot=False):
py_vision
.
CenterCrop
([
height
,
width
]),
py_vision
.
CenterCrop
([
height
,
width
]),
py_vision
.
ToTensor
()
py_vision
.
ToTensor
()
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
image_c_cropped
=
[]
image_c_cropped
=
[]
image_py_cropped
=
[]
image_py_cropped
=
[]
...
@@ -123,9 +124,9 @@ def test_crop_grayscale(height=375, width=375):
...
@@ -123,9 +124,9 @@ def test_crop_grayscale(height=375, width=375):
(
lambda
image
:
(
image
.
transpose
(
1
,
2
,
0
)
*
255
).
astype
(
np
.
uint8
))
(
lambda
image
:
(
image
.
transpose
(
1
,
2
,
0
)
*
255
).
astype
(
np
.
uint8
))
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data1
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
# If input is grayscale, the output dimensions should be single channel
# If input is grayscale, the output dimensions should be single channel
crop_gray
=
vision
.
CenterCrop
([
height
,
width
])
crop_gray
=
vision
.
CenterCrop
([
height
,
width
])
...
...
tests/ut/python/dataset/test_concat.py
浏览文件 @
c45f79d3
...
@@ -17,7 +17,8 @@ import numpy as np
...
@@ -17,7 +17,8 @@ import numpy as np
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.vision.py_transforms
as
F
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.vision.py_transforms
as
F
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
...
@@ -317,15 +318,15 @@ def test_concat_14():
...
@@ -317,15 +318,15 @@ def test_concat_14():
DATA_DIR
=
"../data/dataset/testPK/data"
DATA_DIR
=
"../data/dataset/testPK/data"
DATA_DIR2
=
"../data/dataset/testImageNetData/train/"
DATA_DIR2
=
"../data/dataset/testImageNetData/train/"
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_samples
=
3
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_samples
=
3
)
data2
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR2
,
num_samples
=
2
)
data2
=
ds
.
ImageFolderDataset
(
DATA_DIR2
,
num_samples
=
2
)
transforms1
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms1
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
ToTensor
()])
F
.
ToTensor
()])
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transforms1
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transforms1
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transforms1
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transforms1
)
data3
=
data1
+
data2
data3
=
data1
+
data2
expected
,
output
=
[],
[]
expected
,
output
=
[],
[]
...
@@ -351,7 +352,7 @@ def test_concat_15():
...
@@ -351,7 +352,7 @@ def test_concat_15():
DATA_DIR
=
"../data/dataset/testPK/data"
DATA_DIR
=
"../data/dataset/testPK/data"
DATA_DIR2
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
DATA_DIR2
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR2
,
columns_list
=
[
"image"
])
data2
=
ds
.
TFRecordDataset
(
DATA_DIR2
,
columns_list
=
[
"image"
])
data1
=
data1
.
project
([
"image"
])
data1
=
data1
.
project
([
"image"
])
...
...
tests/ut/python/dataset/test_concatenate_op.py
浏览文件 @
c45f79d3
...
@@ -74,7 +74,7 @@ def test_concatenate_op_multi_input_string():
...
@@ -74,7 +74,7 @@ def test_concatenate_op_multi_input_string():
concatenate_op
=
data_trans
.
Concatenate
(
0
,
prepend
=
prepend_tensor
,
append
=
append_tensor
)
concatenate_op
=
data_trans
.
Concatenate
(
0
,
prepend
=
prepend_tensor
,
append
=
append_tensor
)
data
=
data
.
map
(
input_columns
=
[
"col1"
,
"col2"
],
column
s
_order
=
[
"out1"
],
output_columns
=
[
"out1"
],
data
=
data
.
map
(
input_columns
=
[
"col1"
,
"col2"
],
column_order
=
[
"out1"
],
output_columns
=
[
"out1"
],
operations
=
concatenate_op
)
operations
=
concatenate_op
)
expected
=
np
.
array
([
"dw"
,
"df"
,
"1"
,
"2"
,
"d"
,
"3"
,
"4"
,
"e"
,
"dwsdf"
,
"df"
],
dtype
=
'S'
)
expected
=
np
.
array
([
"dw"
,
"df"
,
"1"
,
"2"
,
"d"
,
"3"
,
"4"
,
"e"
,
"dwsdf"
,
"df"
],
dtype
=
'S'
)
for
data_row
in
data
:
for
data_row
in
data
:
...
@@ -89,7 +89,7 @@ def test_concatenate_op_multi_input_numeric():
...
@@ -89,7 +89,7 @@ def test_concatenate_op_multi_input_numeric():
concatenate_op
=
data_trans
.
Concatenate
(
0
,
prepend
=
prepend_tensor
)
concatenate_op
=
data_trans
.
Concatenate
(
0
,
prepend
=
prepend_tensor
)
data
=
data
.
map
(
input_columns
=
[
"col1"
,
"col2"
],
column
s
_order
=
[
"out1"
],
output_columns
=
[
"out1"
],
data
=
data
.
map
(
input_columns
=
[
"col1"
,
"col2"
],
column_order
=
[
"out1"
],
output_columns
=
[
"out1"
],
operations
=
concatenate_op
)
operations
=
concatenate_op
)
expected
=
np
.
array
([
3
,
5
,
1
,
2
,
3
,
4
])
expected
=
np
.
array
([
3
,
5
,
1
,
2
,
3
,
4
])
for
data_row
in
data
:
for
data_row
in
data
:
...
...
tests/ut/python/dataset/test_config.py
浏览文件 @
c45f79d3
...
@@ -21,8 +21,9 @@ import glob
...
@@ -21,8 +21,9 @@ import glob
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.c_transforms
as
c_vision
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.py_transforms
as
py_vision
import
mindspore.dataset.vision.c_transforms
as
c_vision
import
mindspore.dataset.vision.py_transforms
as
py_vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
dataset_equal
from
util
import
dataset_equal
...
@@ -283,8 +284,8 @@ def test_deterministic_python_seed():
...
@@ -283,8 +284,8 @@ def test_deterministic_python_seed():
py_vision
.
RandomCrop
([
512
,
512
],
[
200
,
200
,
200
,
200
]),
py_vision
.
RandomCrop
([
512
,
512
],
[
200
,
200
,
200
,
200
]),
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
data1_output
=
[]
data1_output
=
[]
# config.set_seed() calls random.seed()
# config.set_seed() calls random.seed()
for
data_one
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
for
data_one
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
...
@@ -292,7 +293,7 @@ def test_deterministic_python_seed():
...
@@ -292,7 +293,7 @@ def test_deterministic_python_seed():
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
# config.set_seed() calls random.seed(), resets seed for next dataset iterator
# config.set_seed() calls random.seed(), resets seed for next dataset iterator
ds
.
config
.
set_seed
(
0
)
ds
.
config
.
set_seed
(
0
)
...
@@ -326,8 +327,8 @@ def test_deterministic_python_seed_multi_thread():
...
@@ -326,8 +327,8 @@ def test_deterministic_python_seed_multi_thread():
py_vision
.
RandomCrop
([
512
,
512
],
[
200
,
200
,
200
,
200
]),
py_vision
.
RandomCrop
([
512
,
512
],
[
200
,
200
,
200
,
200
]),
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
,
python_multiprocessing
=
True
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
,
python_multiprocessing
=
True
)
data1_output
=
[]
data1_output
=
[]
# config.set_seed() calls random.seed()
# config.set_seed() calls random.seed()
for
data_one
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
for
data_one
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
...
@@ -336,7 +337,7 @@ def test_deterministic_python_seed_multi_thread():
...
@@ -336,7 +337,7 @@ def test_deterministic_python_seed_multi_thread():
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
# If seed is set up on constructor
# If seed is set up on constructor
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
,
python_multiprocessing
=
True
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
,
python_multiprocessing
=
True
)
# config.set_seed() calls random.seed()
# config.set_seed() calls random.seed()
ds
.
config
.
set_seed
(
0
)
ds
.
config
.
set_seed
(
0
)
...
...
tests/ut/python/dataset/test_cut_out.py
浏览文件 @
c45f79d3
...
@@ -18,8 +18,9 @@ Testing CutOut op in DE
...
@@ -18,8 +18,9 @@ Testing CutOut op in DE
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.c_transforms
as
c
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.py_transforms
as
f
import
mindspore.dataset.vision.c_transforms
as
c
import
mindspore.dataset.vision.py_transforms
as
f
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
visualize_image
,
visualize_list
,
diff_mse
,
save_and_check_md5
,
\
from
util
import
visualize_image
,
visualize_list
,
diff_mse
,
save_and_check_md5
,
\
config_get_set_seed
,
config_get_set_num_parallel_workers
config_get_set_seed
,
config_get_set_num_parallel_workers
...
@@ -43,8 +44,8 @@ def test_cut_out_op(plot=False):
...
@@ -43,8 +44,8 @@ def test_cut_out_op(plot=False):
f
.
ToTensor
(),
f
.
ToTensor
(),
f
.
RandomErasing
(
value
=
'random'
)
f
.
RandomErasing
(
value
=
'random'
)
]
]
transform_1
=
f
.
ComposeOp
(
transforms_1
)
transform_1
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms_1
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
)
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
...
@@ -89,8 +90,8 @@ def test_cut_out_op_multicut(plot=False):
...
@@ -89,8 +90,8 @@ def test_cut_out_op_multicut(plot=False):
f
.
Decode
(),
f
.
Decode
(),
f
.
ToTensor
(),
f
.
ToTensor
(),
]
]
transform_1
=
f
.
ComposeOp
(
transforms_1
)
transform_1
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms_1
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
)
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
...
@@ -144,8 +145,8 @@ def test_cut_out_md5():
...
@@ -144,8 +145,8 @@ def test_cut_out_md5():
f
.
ToTensor
(),
f
.
ToTensor
(),
f
.
Cutout
(
100
)
f
.
Cutout
(
100
)
]
]
transform
=
f
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
# Compare with expected md5 from images
# Compare with expected md5 from images
filename1
=
"cut_out_01_c_result.npz"
filename1
=
"cut_out_01_c_result.npz"
...
@@ -172,8 +173,8 @@ def test_cut_out_comp(plot=False):
...
@@ -172,8 +173,8 @@ def test_cut_out_comp(plot=False):
f
.
ToTensor
(),
f
.
ToTensor
(),
f
.
Cutout
(
200
)
f
.
Cutout
(
200
)
]
]
transform_1
=
f
.
ComposeOp
(
transforms_1
)
transform_1
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms_1
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
)
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
...
...
tests/ut/python/dataset/test_cutmix_batch_op.py
浏览文件 @
c45f79d3
...
@@ -18,9 +18,9 @@ Testing the CutMixBatch op in DE
...
@@ -18,9 +18,9 @@ Testing the CutMixBatch op in DE
import
numpy
as
np
import
numpy
as
np
import
pytest
import
pytest
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
import
mindspore.dataset.transforms.c_transforms
as
data_trans
import
mindspore.dataset.transforms.c_transforms
as
data_trans
import
mindspore.dataset.
transforms.
vision.utils
as
mode
import
mindspore.dataset.vision.utils
as
mode
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
save_and_check_md5
,
diff_mse
,
visualize_list
,
config_get_set_seed
,
\
from
util
import
save_and_check_md5
,
diff_mse
,
visualize_list
,
config_get_set_seed
,
\
config_get_set_num_parallel_workers
config_get_set_num_parallel_workers
...
@@ -119,11 +119,11 @@ def test_cutmix_batch_success2(plot=False):
...
@@ -119,11 +119,11 @@ def test_cutmix_batch_success2(plot=False):
def
test_cutmix_batch_success3
(
plot
=
False
):
def
test_cutmix_batch_success3
(
plot
=
False
):
"""
"""
Test CutMixBatch op with default values for alpha and prob on a batch of HWC images on ImageFolderDataset
V2
Test CutMixBatch op with default values for alpha and prob on a batch of HWC images on ImageFolderDataset
"""
"""
logger
.
info
(
"test_cutmix_batch_success3"
)
logger
.
info
(
"test_cutmix_batch_success3"
)
ds_original
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR2
,
shuffle
=
False
)
ds_original
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR2
,
shuffle
=
False
)
decode_op
=
vision
.
Decode
()
decode_op
=
vision
.
Decode
()
ds_original
=
ds_original
.
map
(
input_columns
=
[
"image"
],
operations
=
[
decode_op
])
ds_original
=
ds_original
.
map
(
input_columns
=
[
"image"
],
operations
=
[
decode_op
])
ds_original
=
ds_original
.
batch
(
4
,
pad_info
=
{},
drop_remainder
=
True
)
ds_original
=
ds_original
.
batch
(
4
,
pad_info
=
{},
drop_remainder
=
True
)
...
@@ -136,7 +136,7 @@ def test_cutmix_batch_success3(plot=False):
...
@@ -136,7 +136,7 @@ def test_cutmix_batch_success3(plot=False):
images_original
=
np
.
append
(
images_original
,
image
,
axis
=
0
)
images_original
=
np
.
append
(
images_original
,
image
,
axis
=
0
)
# CutMix Images
# CutMix Images
data1
=
ds
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR2
,
shuffle
=
False
)
data1
=
ds
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR2
,
shuffle
=
False
)
decode_op
=
vision
.
Decode
()
decode_op
=
vision
.
Decode
()
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
[
decode_op
])
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
[
decode_op
])
...
...
tests/ut/python/dataset/test_dataset_numpy_slices.py
浏览文件 @
c45f79d3
...
@@ -18,7 +18,7 @@ import numpy as np
...
@@ -18,7 +18,7 @@ import numpy as np
import
pandas
as
pd
import
pandas
as
pd
import
mindspore.dataset
as
de
import
mindspore.dataset
as
de
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
def
test_numpy_slices_list_1
():
def
test_numpy_slices_list_1
():
...
...
tests/ut/python/dataset/test_datasets_celeba.py
浏览文件 @
c45f79d3
...
@@ -12,9 +12,9 @@
...
@@ -12,9 +12,9 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
mindspore.dataset.
transforms.
vision
import
Inter
from
mindspore.dataset.vision
import
Inter
DATA_DIR
=
"../data/dataset/testCelebAData/"
DATA_DIR
=
"../data/dataset/testCelebAData/"
...
...
tests/ut/python/dataset/test_datasets_coco.py
浏览文件 @
c45f79d3
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
# ==============================================================================
# ==============================================================================
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
DATA_DIR
=
"../data/dataset/testCOCO/train/"
DATA_DIR
=
"../data/dataset/testCOCO/train/"
DATA_DIR_2
=
"../data/dataset/testCOCO/train"
DATA_DIR_2
=
"../data/dataset/testCOCO/train"
...
...
tests/ut/python/dataset/test_datasets_generator.py
浏览文件 @
c45f79d3
...
@@ -244,7 +244,7 @@ def test_generator_8():
...
@@ -244,7 +244,7 @@ def test_generator_8():
data1
=
data1
.
map
(
input_columns
=
"col0"
,
output_columns
=
"out0"
,
operations
=
(
lambda
x
:
x
*
3
),
data1
=
data1
.
map
(
input_columns
=
"col0"
,
output_columns
=
"out0"
,
operations
=
(
lambda
x
:
x
*
3
),
num_parallel_workers
=
2
)
num_parallel_workers
=
2
)
data1
=
data1
.
map
(
input_columns
=
"col1"
,
output_columns
=
[
"out1"
,
"out2"
],
operations
=
(
lambda
x
:
(
x
*
7
,
x
)),
data1
=
data1
.
map
(
input_columns
=
"col1"
,
output_columns
=
[
"out1"
,
"out2"
],
operations
=
(
lambda
x
:
(
x
*
7
,
x
)),
num_parallel_workers
=
2
,
column
s
_order
=
[
"out0"
,
"out1"
,
"out2"
])
num_parallel_workers
=
2
,
column_order
=
[
"out0"
,
"out1"
,
"out2"
])
data1
=
data1
.
map
(
input_columns
=
"out2"
,
output_columns
=
"out2"
,
operations
=
(
lambda
x
:
x
+
1
),
data1
=
data1
.
map
(
input_columns
=
"out2"
,
output_columns
=
"out2"
,
operations
=
(
lambda
x
:
x
+
1
),
num_parallel_workers
=
2
)
num_parallel_workers
=
2
)
...
@@ -299,7 +299,7 @@ def test_generator_10():
...
@@ -299,7 +299,7 @@ def test_generator_10():
# apply dataset operations
# apply dataset operations
data1
=
ds
.
GeneratorDataset
(
generator_mc
(
2048
),
[
"col0"
,
"col1"
])
data1
=
ds
.
GeneratorDataset
(
generator_mc
(
2048
),
[
"col0"
,
"col1"
])
data1
=
data1
.
map
(
input_columns
=
"col1"
,
output_columns
=
[
"out1"
,
"out2"
],
operations
=
(
lambda
x
:
(
x
,
x
*
5
)),
data1
=
data1
.
map
(
input_columns
=
"col1"
,
output_columns
=
[
"out1"
,
"out2"
],
operations
=
(
lambda
x
:
(
x
,
x
*
5
)),
column
s
_order
=
[
'col0'
,
'out1'
,
'out2'
],
num_parallel_workers
=
2
)
column_order
=
[
'col0'
,
'out1'
,
'out2'
],
num_parallel_workers
=
2
)
# Expected column order is |col0|out1|out2|
# Expected column order is |col0|out1|out2|
i
=
0
i
=
0
...
@@ -318,17 +318,17 @@ def test_generator_11():
...
@@ -318,17 +318,17 @@ def test_generator_11():
Test map column order when len(input_columns) != len(output_columns).
Test map column order when len(input_columns) != len(output_columns).
"""
"""
logger
.
info
(
"Test map column order when len(input_columns) != len(output_columns), "
logger
.
info
(
"Test map column order when len(input_columns) != len(output_columns), "
"and column
s
_order drops some columns."
)
"and column_order drops some columns."
)
# apply dataset operations
# apply dataset operations
data1
=
ds
.
GeneratorDataset
(
generator_mc
(
2048
),
[
"col0"
,
"col1"
])
data1
=
ds
.
GeneratorDataset
(
generator_mc
(
2048
),
[
"col0"
,
"col1"
])
data1
=
data1
.
map
(
input_columns
=
"col1"
,
output_columns
=
[
"out1"
,
"out2"
],
operations
=
(
lambda
x
:
(
x
,
x
*
5
)),
data1
=
data1
.
map
(
input_columns
=
"col1"
,
output_columns
=
[
"out1"
,
"out2"
],
operations
=
(
lambda
x
:
(
x
,
x
*
5
)),
column
s
_order
=
[
'out1'
,
'out2'
],
num_parallel_workers
=
2
)
column_order
=
[
'out1'
,
'out2'
],
num_parallel_workers
=
2
)
# Expected column order is |out1|out2|
# Expected column order is |out1|out2|
i
=
0
i
=
0
for
item
in
data1
.
create_tuple_iterator
(
num_epochs
=
1
):
for
item
in
data1
.
create_tuple_iterator
(
num_epochs
=
1
):
# len should be 2 because col0 is dropped (not included in column
s
_order)
# len should be 2 because col0 is dropped (not included in column_order)
assert
len
(
item
)
==
2
assert
len
(
item
)
==
2
golden
=
np
.
array
([[
i
,
i
+
1
],
[
i
+
2
,
i
+
3
]])
golden
=
np
.
array
([[
i
,
i
+
1
],
[
i
+
2
,
i
+
3
]])
np
.
testing
.
assert_array_equal
(
item
[
0
],
golden
)
np
.
testing
.
assert_array_equal
(
item
[
0
],
golden
)
...
@@ -358,7 +358,7 @@ def test_generator_12():
...
@@ -358,7 +358,7 @@ def test_generator_12():
i
=
i
+
1
i
=
i
+
1
data1
=
ds
.
GeneratorDataset
(
generator_mc
(
2048
),
[
"col0"
,
"col1"
])
data1
=
ds
.
GeneratorDataset
(
generator_mc
(
2048
),
[
"col0"
,
"col1"
])
data1
=
data1
.
map
(
operations
=
(
lambda
x
:
(
x
*
5
)),
column
s
_order
=
[
"col1"
,
"col0"
],
num_parallel_workers
=
2
)
data1
=
data1
.
map
(
operations
=
(
lambda
x
:
(
x
*
5
)),
column_order
=
[
"col1"
,
"col0"
],
num_parallel_workers
=
2
)
# Expected column order is |col0|col1|
# Expected column order is |col0|col1|
i
=
0
i
=
0
...
@@ -392,7 +392,7 @@ def test_generator_13():
...
@@ -392,7 +392,7 @@ def test_generator_13():
i
=
i
+
1
i
=
i
+
1
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
# each data is a dictionary
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
# each data is a dictionary
# len should be 2 because col0 is dropped (not included in column
s
_order)
# len should be 2 because col0 is dropped (not included in column_order)
assert
len
(
item
)
==
2
assert
len
(
item
)
==
2
golden
=
np
.
array
([
i
*
5
])
golden
=
np
.
array
([
i
*
5
])
np
.
testing
.
assert_array_equal
(
item
[
"out0"
],
golden
)
np
.
testing
.
assert_array_equal
(
item
[
"out0"
],
golden
)
...
@@ -508,7 +508,7 @@ def test_generator_error_3():
...
@@ -508,7 +508,7 @@ def test_generator_error_3():
for
_
in
data1
:
for
_
in
data1
:
pass
pass
assert
"When (len(input_columns) != len(output_columns)), column
s
_order must be specified."
in
str
(
info
.
value
)
assert
"When (len(input_columns) != len(output_columns)), column_order must be specified."
in
str
(
info
.
value
)
def
test_generator_error_4
():
def
test_generator_error_4
():
...
...
tests/ut/python/dataset/test_datasets_get_dataset_size.py
浏览文件 @
c45f79d3
...
@@ -27,16 +27,16 @@ CIFAR100_DATA_DIR = "../data/dataset/testCifar100Data"
...
@@ -27,16 +27,16 @@ CIFAR100_DATA_DIR = "../data/dataset/testCifar100Data"
def
test_imagenet_rawdata_dataset_size
():
def
test_imagenet_rawdata_dataset_size
():
ds_total
=
ds
.
ImageFolderDataset
V2
(
IMAGENET_RAWDATA_DIR
)
ds_total
=
ds
.
ImageFolderDataset
(
IMAGENET_RAWDATA_DIR
)
assert
ds_total
.
get_dataset_size
()
==
6
assert
ds_total
.
get_dataset_size
()
==
6
ds_shard_1_0
=
ds
.
ImageFolderDataset
V2
(
IMAGENET_RAWDATA_DIR
,
num_shards
=
1
,
shard_id
=
0
)
ds_shard_1_0
=
ds
.
ImageFolderDataset
(
IMAGENET_RAWDATA_DIR
,
num_shards
=
1
,
shard_id
=
0
)
assert
ds_shard_1_0
.
get_dataset_size
()
==
6
assert
ds_shard_1_0
.
get_dataset_size
()
==
6
ds_shard_2_0
=
ds
.
ImageFolderDataset
V2
(
IMAGENET_RAWDATA_DIR
,
num_shards
=
2
,
shard_id
=
0
)
ds_shard_2_0
=
ds
.
ImageFolderDataset
(
IMAGENET_RAWDATA_DIR
,
num_shards
=
2
,
shard_id
=
0
)
assert
ds_shard_2_0
.
get_dataset_size
()
==
3
assert
ds_shard_2_0
.
get_dataset_size
()
==
3
ds_shard_3_0
=
ds
.
ImageFolderDataset
V2
(
IMAGENET_RAWDATA_DIR
,
num_shards
=
3
,
shard_id
=
0
)
ds_shard_3_0
=
ds
.
ImageFolderDataset
(
IMAGENET_RAWDATA_DIR
,
num_shards
=
3
,
shard_id
=
0
)
assert
ds_shard_3_0
.
get_dataset_size
()
==
2
assert
ds_shard_3_0
.
get_dataset_size
()
==
2
...
...
tests/ut/python/dataset/test_datasets_imagefolder.py
浏览文件 @
c45f79d3
...
@@ -24,7 +24,7 @@ def test_imagefolder_basic():
...
@@ -24,7 +24,7 @@ def test_imagefolder_basic():
repeat_count
=
1
repeat_count
=
1
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -44,7 +44,7 @@ def test_imagefolder_numsamples():
...
@@ -44,7 +44,7 @@ def test_imagefolder_numsamples():
repeat_count
=
1
repeat_count
=
1
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_samples
=
10
,
num_parallel_workers
=
2
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_samples
=
10
,
num_parallel_workers
=
2
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -58,7 +58,7 @@ def test_imagefolder_numsamples():
...
@@ -58,7 +58,7 @@ def test_imagefolder_numsamples():
assert
num_iter
==
10
assert
num_iter
==
10
random_sampler
=
ds
.
RandomSampler
(
num_samples
=
3
,
replacement
=
True
)
random_sampler
=
ds
.
RandomSampler
(
num_samples
=
3
,
replacement
=
True
)
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_parallel_workers
=
2
,
sampler
=
random_sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_parallel_workers
=
2
,
sampler
=
random_sampler
)
num_iter
=
0
num_iter
=
0
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
...
@@ -67,7 +67,7 @@ def test_imagefolder_numsamples():
...
@@ -67,7 +67,7 @@ def test_imagefolder_numsamples():
assert
num_iter
==
3
assert
num_iter
==
3
random_sampler
=
ds
.
RandomSampler
(
num_samples
=
3
,
replacement
=
False
)
random_sampler
=
ds
.
RandomSampler
(
num_samples
=
3
,
replacement
=
False
)
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_parallel_workers
=
2
,
sampler
=
random_sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_parallel_workers
=
2
,
sampler
=
random_sampler
)
num_iter
=
0
num_iter
=
0
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
...
@@ -82,7 +82,7 @@ def test_imagefolder_numshards():
...
@@ -82,7 +82,7 @@ def test_imagefolder_numshards():
repeat_count
=
1
repeat_count
=
1
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
3
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
3
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -102,7 +102,7 @@ def test_imagefolder_shardid():
...
@@ -102,7 +102,7 @@ def test_imagefolder_shardid():
repeat_count
=
1
repeat_count
=
1
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
1
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_shards
=
4
,
shard_id
=
1
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -122,7 +122,7 @@ def test_imagefolder_noshuffle():
...
@@ -122,7 +122,7 @@ def test_imagefolder_noshuffle():
repeat_count
=
1
repeat_count
=
1
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
shuffle
=
False
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
shuffle
=
False
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -142,7 +142,7 @@ def test_imagefolder_extrashuffle():
...
@@ -142,7 +142,7 @@ def test_imagefolder_extrashuffle():
repeat_count
=
2
repeat_count
=
2
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
shuffle
=
True
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
shuffle
=
True
)
data1
=
data1
.
shuffle
(
buffer_size
=
5
)
data1
=
data1
.
shuffle
(
buffer_size
=
5
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
...
@@ -164,7 +164,7 @@ def test_imagefolder_classindex():
...
@@ -164,7 +164,7 @@ def test_imagefolder_classindex():
# apply dataset operations
# apply dataset operations
class_index
=
{
"class3"
:
333
,
"class1"
:
111
}
class_index
=
{
"class3"
:
333
,
"class1"
:
111
}
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
class_indexing
=
class_index
,
shuffle
=
False
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
class_indexing
=
class_index
,
shuffle
=
False
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
golden
=
[
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
golden
=
[
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
...
@@ -189,7 +189,7 @@ def test_imagefolder_negative_classindex():
...
@@ -189,7 +189,7 @@ def test_imagefolder_negative_classindex():
# apply dataset operations
# apply dataset operations
class_index
=
{
"class3"
:
-
333
,
"class1"
:
111
}
class_index
=
{
"class3"
:
-
333
,
"class1"
:
111
}
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
class_indexing
=
class_index
,
shuffle
=
False
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
class_indexing
=
class_index
,
shuffle
=
False
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
golden
=
[
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
golden
=
[
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
111
,
...
@@ -214,7 +214,7 @@ def test_imagefolder_extensions():
...
@@ -214,7 +214,7 @@ def test_imagefolder_extensions():
# apply dataset operations
# apply dataset operations
ext
=
[
".jpg"
,
".JPEG"
]
ext
=
[
".jpg"
,
".JPEG"
]
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
extensions
=
ext
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
extensions
=
ext
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -235,7 +235,7 @@ def test_imagefolder_decode():
...
@@ -235,7 +235,7 @@ def test_imagefolder_decode():
# apply dataset operations
# apply dataset operations
ext
=
[
".jpg"
,
".JPEG"
]
ext
=
[
".jpg"
,
".JPEG"
]
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
extensions
=
ext
,
decode
=
True
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
extensions
=
ext
,
decode
=
True
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -262,7 +262,7 @@ def test_sequential_sampler():
...
@@ -262,7 +262,7 @@ def test_sequential_sampler():
# apply dataset operations
# apply dataset operations
sampler
=
ds
.
SequentialSampler
()
sampler
=
ds
.
SequentialSampler
()
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
result
=
[]
result
=
[]
...
@@ -283,7 +283,7 @@ def test_random_sampler():
...
@@ -283,7 +283,7 @@ def test_random_sampler():
# apply dataset operations
# apply dataset operations
sampler
=
ds
.
RandomSampler
()
sampler
=
ds
.
RandomSampler
()
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -304,7 +304,7 @@ def test_distributed_sampler():
...
@@ -304,7 +304,7 @@ def test_distributed_sampler():
# apply dataset operations
# apply dataset operations
sampler
=
ds
.
DistributedSampler
(
10
,
1
)
sampler
=
ds
.
DistributedSampler
(
10
,
1
)
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -325,7 +325,7 @@ def test_pk_sampler():
...
@@ -325,7 +325,7 @@ def test_pk_sampler():
# apply dataset operations
# apply dataset operations
sampler
=
ds
.
PKSampler
(
3
)
sampler
=
ds
.
PKSampler
(
3
)
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -347,7 +347,7 @@ def test_subset_random_sampler():
...
@@ -347,7 +347,7 @@ def test_subset_random_sampler():
# apply dataset operations
# apply dataset operations
indices
=
[
0
,
1
,
2
,
3
,
4
,
5
,
12
,
13
,
14
,
15
,
16
,
11
]
indices
=
[
0
,
1
,
2
,
3
,
4
,
5
,
12
,
13
,
14
,
15
,
16
,
11
]
sampler
=
ds
.
SubsetRandomSampler
(
indices
)
sampler
=
ds
.
SubsetRandomSampler
(
indices
)
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -369,7 +369,7 @@ def test_weighted_random_sampler():
...
@@ -369,7 +369,7 @@ def test_weighted_random_sampler():
# apply dataset operations
# apply dataset operations
weights
=
[
1.0
,
0.1
,
0.02
,
0.3
,
0.4
,
0.05
,
1.2
,
0.13
,
0.14
,
0.015
,
0.16
,
1.1
]
weights
=
[
1.0
,
0.1
,
0.02
,
0.3
,
0.4
,
0.05
,
1.2
,
0.13
,
0.14
,
0.015
,
0.16
,
1.1
]
sampler
=
ds
.
WeightedRandomSampler
(
weights
,
11
)
sampler
=
ds
.
WeightedRandomSampler
(
weights
,
11
)
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
sampler
=
sampler
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -389,7 +389,7 @@ def test_imagefolder_rename():
...
@@ -389,7 +389,7 @@ def test_imagefolder_rename():
repeat_count
=
1
repeat_count
=
1
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_samples
=
10
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_samples
=
10
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
num_iter
=
0
num_iter
=
0
...
@@ -421,8 +421,8 @@ def test_imagefolder_zip():
...
@@ -421,8 +421,8 @@ def test_imagefolder_zip():
repeat_count
=
2
repeat_count
=
2
# apply dataset operations
# apply dataset operations
data1
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_samples
=
10
)
data1
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_samples
=
10
)
data2
=
ds
.
ImageFolderDataset
V2
(
DATA_DIR
,
num_samples
=
10
)
data2
=
ds
.
ImageFolderDataset
(
DATA_DIR
,
num_samples
=
10
)
data1
=
data1
.
repeat
(
repeat_count
)
data1
=
data1
.
repeat
(
repeat_count
)
# rename dataset2 for no conflict
# rename dataset2 for no conflict
...
...
tests/ut/python/dataset/test_datasets_sharding.py
浏览文件 @
c45f79d3
...
@@ -20,9 +20,9 @@ def test_imagefolder_shardings(print_res=False):
...
@@ -20,9 +20,9 @@ def test_imagefolder_shardings(print_res=False):
image_folder_dir
=
"../data/dataset/testPK/data"
image_folder_dir
=
"../data/dataset/testPK/data"
def
sharding_config
(
num_shards
,
shard_id
,
num_samples
,
shuffle
,
class_index
,
repeat_cnt
=
1
):
def
sharding_config
(
num_shards
,
shard_id
,
num_samples
,
shuffle
,
class_index
,
repeat_cnt
=
1
):
data1
=
ds
.
ImageFolderDataset
V2
(
image_folder_dir
,
num_samples
=
num_samples
,
num_shards
=
num_shards
,
data1
=
ds
.
ImageFolderDataset
(
image_folder_dir
,
num_samples
=
num_samples
,
num_shards
=
num_shards
,
shard_id
=
shard_id
,
shard_id
=
shard_id
,
shuffle
=
shuffle
,
class_indexing
=
class_index
,
decode
=
True
)
shuffle
=
shuffle
,
class_indexing
=
class_index
,
decode
=
True
)
data1
=
data1
.
repeat
(
repeat_cnt
)
data1
=
data1
.
repeat
(
repeat_cnt
)
res
=
[]
res
=
[]
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
# each data is a dictionary
for
item
in
data1
.
create_dict_iterator
(
num_epochs
=
1
):
# each data is a dictionary
...
...
tests/ut/python/dataset/test_datasets_voc.py
浏览文件 @
c45f79d3
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
# limitations under the License.
# limitations under the License.
# ==============================================================================
# ==============================================================================
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
DATA_DIR
=
"../data/dataset/testVOC2012"
DATA_DIR
=
"../data/dataset/testVOC2012"
IMAGE_SHAPE
=
[
2268
,
2268
,
2268
,
2268
,
642
,
607
,
561
,
596
,
612
,
2268
]
IMAGE_SHAPE
=
[
2268
,
2268
,
2268
,
2268
,
642
,
607
,
561
,
596
,
612
,
2268
]
...
...
tests/ut/python/dataset/test_decode.py
浏览文件 @
c45f79d3
...
@@ -18,7 +18,7 @@ Testing Decode op in DE
...
@@ -18,7 +18,7 @@ Testing Decode op in DE
import
cv2
import
cv2
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
diff_mse
from
util
import
diff_mse
...
...
tests/ut/python/dataset/test_deviceop_cpu.py
浏览文件 @
c45f79d3
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
import
time
import
time
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
...
...
tests/ut/python/dataset/test_duplicate_op.py
浏览文件 @
c45f79d3
...
@@ -24,7 +24,7 @@ import mindspore.dataset.transforms.c_transforms as ops
...
@@ -24,7 +24,7 @@ import mindspore.dataset.transforms.c_transforms as ops
def
compare
(
array
):
def
compare
(
array
):
data
=
ds
.
NumpySlicesDataset
([
array
],
column_names
=
"x"
)
data
=
ds
.
NumpySlicesDataset
([
array
],
column_names
=
"x"
)
array
=
np
.
array
(
array
)
array
=
np
.
array
(
array
)
data
=
data
.
map
(
input_columns
=
[
"x"
],
output_columns
=
[
"x"
,
"y"
],
column
s
_order
=
[
"x"
,
"y"
],
data
=
data
.
map
(
input_columns
=
[
"x"
],
output_columns
=
[
"x"
,
"y"
],
column_order
=
[
"x"
,
"y"
],
operations
=
ops
.
Duplicate
())
operations
=
ops
.
Duplicate
())
for
d
in
data
.
create_dict_iterator
(
num_epochs
=
1
):
for
d
in
data
.
create_dict_iterator
(
num_epochs
=
1
):
np
.
testing
.
assert_array_equal
(
array
,
d
[
"x"
])
np
.
testing
.
assert_array_equal
(
array
,
d
[
"x"
])
...
...
tests/ut/python/dataset/test_epoch_ctrl.py
浏览文件 @
c45f79d3
...
@@ -21,7 +21,7 @@ import numpy as np
...
@@ -21,7 +21,7 @@ import numpy as np
import
pytest
import
pytest
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
...
...
tests/ut/python/dataset/test_equalize.py
浏览文件 @
c45f79d3
...
@@ -18,8 +18,9 @@ Testing Equalize op in DE
...
@@ -18,8 +18,9 @@ Testing Equalize op in DE
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.py_transforms
as
F
import
mindspore.dataset.vision.c_transforms
as
C
import
mindspore.dataset.vision.py_transforms
as
F
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
visualize_list
,
visualize_one_channel_dataset
,
diff_mse
,
save_and_check_md5
from
util
import
visualize_list
,
visualize_one_channel_dataset
,
diff_mse
,
save_and_check_md5
...
@@ -36,14 +37,14 @@ def test_equalize_py(plot=False):
...
@@ -36,14 +37,14 @@ def test_equalize_py(plot=False):
logger
.
info
(
"Test Equalize"
)
logger
.
info
(
"Test Equalize"
)
# Original Images
# Original Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_original
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_original
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
ToTensor
()])
F
.
ToTensor
()])
ds_original
=
ds
.
map
(
input_columns
=
"image"
,
ds_original
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_original
()
)
operations
=
transforms_original
)
ds_original
=
ds_original
.
batch
(
512
)
ds_original
=
ds_original
.
batch
(
512
)
...
@@ -56,15 +57,15 @@ def test_equalize_py(plot=False):
...
@@ -56,15 +57,15 @@ def test_equalize_py(plot=False):
axis
=
0
)
axis
=
0
)
# Color Equalized Images
# Color Equalized Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_equalize
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_equalize
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
Equalize
(),
F
.
Equalize
(),
F
.
ToTensor
()])
F
.
ToTensor
()])
ds_equalize
=
ds
.
map
(
input_columns
=
"image"
,
ds_equalize
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_equalize
()
)
operations
=
transforms_equalize
)
ds_equalize
=
ds_equalize
.
batch
(
512
)
ds_equalize
=
ds_equalize
.
batch
(
512
)
...
@@ -93,7 +94,7 @@ def test_equalize_c(plot=False):
...
@@ -93,7 +94,7 @@ def test_equalize_c(plot=False):
logger
.
info
(
"Test Equalize cpp op"
)
logger
.
info
(
"Test Equalize cpp op"
)
# Original Images
# Original Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_original
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
])]
transforms_original
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
])]
...
@@ -111,7 +112,7 @@ def test_equalize_c(plot=False):
...
@@ -111,7 +112,7 @@ def test_equalize_c(plot=False):
axis
=
0
)
axis
=
0
)
# Equalize Images
# Equalize Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transform_equalize
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
]),
transform_equalize
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
]),
C
.
Equalize
()]
C
.
Equalize
()]
...
@@ -145,7 +146,7 @@ def test_equalize_py_c(plot=False):
...
@@ -145,7 +146,7 @@ def test_equalize_py_c(plot=False):
logger
.
info
(
"Test Equalize cpp and python op"
)
logger
.
info
(
"Test Equalize cpp and python op"
)
# equalize Images in cpp
# equalize Images in cpp
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
...
@@ -163,17 +164,17 @@ def test_equalize_py_c(plot=False):
...
@@ -163,17 +164,17 @@ def test_equalize_py_c(plot=False):
axis
=
0
)
axis
=
0
)
# Equalize images in python
# Equalize images in python
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
transforms_p_equalize
=
F
.
ComposeOp
([
lambda
img
:
img
.
astype
(
np
.
uint8
),
transforms_p_equalize
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
lambda
img
:
img
.
astype
(
np
.
uint8
),
F
.
ToPIL
(),
F
.
ToPIL
(),
F
.
Equalize
(),
F
.
Equalize
(),
np
.
array
])
np
.
array
])
ds_p_equalize
=
ds
.
map
(
input_columns
=
"image"
,
ds_p_equalize
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_p_equalize
()
)
operations
=
transforms_p_equalize
)
ds_p_equalize
=
ds_p_equalize
.
batch
(
512
)
ds_p_equalize
=
ds_p_equalize
.
batch
(
512
)
...
@@ -204,7 +205,7 @@ def test_equalize_one_channel():
...
@@ -204,7 +205,7 @@ def test_equalize_one_channel():
c_op
=
C
.
Equalize
()
c_op
=
C
.
Equalize
()
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -253,12 +254,12 @@ def test_equalize_md5_py():
...
@@ -253,12 +254,12 @@ def test_equalize_md5_py():
logger
.
info
(
"Test Equalize"
)
logger
.
info
(
"Test Equalize"
)
# First dataset
# First dataset
data1
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
data1
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Equalize
(),
F
.
Equalize
(),
F
.
ToTensor
()])
F
.
ToTensor
()])
data1
=
data1
.
map
(
input_columns
=
"image"
,
operations
=
transforms
()
)
data1
=
data1
.
map
(
input_columns
=
"image"
,
operations
=
transforms
)
# Compare with expected md5 from images
# Compare with expected md5 from images
filename
=
"equalize_01_result.npz"
filename
=
"equalize_01_result.npz"
save_and_check_md5
(
data1
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
save_and_check_md5
(
data1
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
...
@@ -271,7 +272,7 @@ def test_equalize_md5_c():
...
@@ -271,7 +272,7 @@ def test_equalize_md5_c():
logger
.
info
(
"Test Equalize cpp op with md5 check"
)
logger
.
info
(
"Test Equalize cpp op with md5 check"
)
# Generate dataset
# Generate dataset
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_equalize
=
[
C
.
Decode
(),
transforms_equalize
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
]),
C
.
Resize
(
size
=
[
224
,
224
]),
...
...
tests/ut/python/dataset/test_exceptions.py
浏览文件 @
c45f79d3
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
import
pytest
import
pytest
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
...
...
tests/ut/python/dataset/test_filterop.py
浏览文件 @
c45f79d3
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
cde
import
mindspore.dataset.vision.c_transforms
as
cde
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
DATA_DIR
=
[
"../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"
]
SCHEMA_DIR
=
"../data/dataset/test_tf_file_3_images/datasetSchema.json"
SCHEMA_DIR
=
"../data/dataset/test_tf_file_3_images/datasetSchema.json"
...
...
tests/ut/python/dataset/test_five_crop.py
浏览文件 @
c45f79d3
...
@@ -18,7 +18,8 @@ import pytest
...
@@ -18,7 +18,8 @@ import pytest
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.py_transforms
as
vision
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.vision.py_transforms
as
vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
visualize_list
,
save_and_check_md5
from
util
import
visualize_list
,
save_and_check_md5
...
@@ -39,8 +40,8 @@ def test_five_crop_op(plot=False):
...
@@ -39,8 +40,8 @@ def test_five_crop_op(plot=False):
vision
.
Decode
(),
vision
.
Decode
(),
vision
.
ToTensor
(),
vision
.
ToTensor
(),
]
]
transform_1
=
vision
.
ComposeOp
(
transforms_1
)
transform_1
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms_1
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_1
)
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
...
@@ -49,8 +50,8 @@ def test_five_crop_op(plot=False):
...
@@ -49,8 +50,8 @@ def test_five_crop_op(plot=False):
vision
.
FiveCrop
(
200
),
vision
.
FiveCrop
(
200
),
lambda
images
:
np
.
stack
([
vision
.
ToTensor
()(
image
)
for
image
in
images
])
# 4D stack of 5 images
lambda
images
:
np
.
stack
([
vision
.
ToTensor
()(
image
)
for
image
in
images
])
# 4D stack of 5 images
]
]
transform_2
=
vision
.
ComposeOp
(
transforms_2
)
transform_2
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms_2
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_2
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform_2
)
num_iter
=
0
num_iter
=
0
for
item1
,
item2
in
zip
(
data1
.
create_dict_iterator
(
num_epochs
=
1
),
data2
.
create_dict_iterator
(
num_epochs
=
1
)):
for
item1
,
item2
in
zip
(
data1
.
create_dict_iterator
(
num_epochs
=
1
),
data2
.
create_dict_iterator
(
num_epochs
=
1
)):
...
@@ -83,8 +84,8 @@ def test_five_crop_error_msg():
...
@@ -83,8 +84,8 @@ def test_five_crop_error_msg():
vision
.
FiveCrop
(
200
),
vision
.
FiveCrop
(
200
),
vision
.
ToTensor
()
vision
.
ToTensor
()
]
]
transform
=
vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data
=
data
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data
=
data
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
with
pytest
.
raises
(
RuntimeError
)
as
info
:
with
pytest
.
raises
(
RuntimeError
)
as
info
:
for
_
in
data
:
for
_
in
data
:
...
@@ -108,8 +109,8 @@ def test_five_crop_md5():
...
@@ -108,8 +109,8 @@ def test_five_crop_md5():
vision
.
FiveCrop
(
100
),
vision
.
FiveCrop
(
100
),
lambda
images
:
np
.
stack
([
vision
.
ToTensor
()(
image
)
for
image
in
images
])
# 4D stack of 5 images
lambda
images
:
np
.
stack
([
vision
.
ToTensor
()(
image
)
for
image
in
images
])
# 4D stack of 5 images
]
]
transform
=
vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data
=
data
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data
=
data
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
# Compare with expected md5 from images
# Compare with expected md5 from images
filename
=
"five_crop_01_result.npz"
filename
=
"five_crop_01_result.npz"
save_and_check_md5
(
data
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
save_and_check_md5
(
data
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
...
...
tests/ut/python/dataset/test_flat_map.py
浏览文件 @
c45f79d3
...
@@ -27,7 +27,7 @@ def test_flat_map_1():
...
@@ -27,7 +27,7 @@ def test_flat_map_1():
def
flat_map_func
(
x
):
def
flat_map_func
(
x
):
data_dir
=
x
[
0
].
item
().
decode
(
'utf8'
)
data_dir
=
x
[
0
].
item
().
decode
(
'utf8'
)
d
=
ds
.
ImageFolderDataset
V2
(
data_dir
)
d
=
ds
.
ImageFolderDataset
(
data_dir
)
return
d
return
d
data
=
ds
.
TextFileDataset
(
DATA_FILE
)
data
=
ds
.
TextFileDataset
(
DATA_FILE
)
...
@@ -47,7 +47,7 @@ def test_flat_map_2():
...
@@ -47,7 +47,7 @@ def test_flat_map_2():
def
flat_map_func_1
(
x
):
def
flat_map_func_1
(
x
):
data_dir
=
x
[
0
].
item
().
decode
(
'utf8'
)
data_dir
=
x
[
0
].
item
().
decode
(
'utf8'
)
d
=
ds
.
ImageFolderDataset
V2
(
data_dir
)
d
=
ds
.
ImageFolderDataset
(
data_dir
)
return
d
return
d
def
flat_map_func_2
(
x
):
def
flat_map_func_2
(
x
):
...
...
tests/ut/python/dataset/test_get_col_names.py
浏览文件 @
c45f79d3
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.
transforms.
vision.c_transforms
as
vision
import
mindspore.dataset.vision.c_transforms
as
vision
CELEBA_DIR
=
"../data/dataset/testCelebAData"
CELEBA_DIR
=
"../data/dataset/testCelebAData"
CIFAR10_DIR
=
"../data/dataset/testCifar10Data"
CIFAR10_DIR
=
"../data/dataset/testCifar10Data"
...
@@ -75,7 +75,7 @@ def test_get_column_name_generator():
...
@@ -75,7 +75,7 @@ def test_get_column_name_generator():
def
test_get_column_name_imagefolder
():
def
test_get_column_name_imagefolder
():
data
=
ds
.
ImageFolderDataset
V2
(
IMAGE_FOLDER_DIR
)
data
=
ds
.
ImageFolderDataset
(
IMAGE_FOLDER_DIR
)
assert
data
.
get_col_names
()
==
[
"image"
,
"label"
]
assert
data
.
get_col_names
()
==
[
"image"
,
"label"
]
...
@@ -105,7 +105,7 @@ def test_get_column_name_map():
...
@@ -105,7 +105,7 @@ def test_get_column_name_map():
assert
data
.
get_col_names
()
==
[
"col1"
,
"label"
]
assert
data
.
get_col_names
()
==
[
"col1"
,
"label"
]
data
=
ds
.
Cifar10Dataset
(
CIFAR10_DIR
)
data
=
ds
.
Cifar10Dataset
(
CIFAR10_DIR
)
data
=
data
.
map
(
input_columns
=
[
"image"
],
operations
=
center_crop_op
,
output_columns
=
[
"col1"
,
"col2"
],
data
=
data
.
map
(
input_columns
=
[
"image"
],
operations
=
center_crop_op
,
output_columns
=
[
"col1"
,
"col2"
],
column
s
_order
=
[
"col2"
,
"col1"
])
column_order
=
[
"col2"
,
"col1"
])
assert
data
.
get_col_names
()
==
[
"col2"
,
"col1"
]
assert
data
.
get_col_names
()
==
[
"col2"
,
"col1"
]
...
...
tests/ut/python/dataset/test_get_size.py
浏览文件 @
c45f79d3
...
@@ -150,13 +150,13 @@ def test_manifest():
...
@@ -150,13 +150,13 @@ def test_manifest():
def
test_imagefolder
():
def
test_imagefolder
():
data
=
ds
.
ImageFolderDataset
V2
(
"../data/dataset/testPK/data/"
)
data
=
ds
.
ImageFolderDataset
(
"../data/dataset/testPK/data/"
)
assert
data
.
get_dataset_size
()
==
44
assert
data
.
get_dataset_size
()
==
44
assert
data
.
num_classes
()
==
4
assert
data
.
num_classes
()
==
4
data
=
data
.
shuffle
(
100
)
data
=
data
.
shuffle
(
100
)
assert
data
.
num_classes
()
==
4
assert
data
.
num_classes
()
==
4
data
=
ds
.
ImageFolderDataset
V2
(
"../data/dataset/testPK/data/"
,
num_samples
=
10
)
data
=
ds
.
ImageFolderDataset
(
"../data/dataset/testPK/data/"
,
num_samples
=
10
)
assert
data
.
get_dataset_size
()
==
10
assert
data
.
get_dataset_size
()
==
10
assert
data
.
num_classes
()
==
4
assert
data
.
num_classes
()
==
4
...
...
tests/ut/python/dataset/test_invert.py
浏览文件 @
c45f79d3
...
@@ -18,8 +18,9 @@ Testing Invert op in DE
...
@@ -18,8 +18,9 @@ Testing Invert op in DE
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.engine
as
de
import
mindspore.dataset.transforms.vision.py_transforms
as
F
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.transforms.vision.c_transforms
as
C
import
mindspore.dataset.vision.py_transforms
as
F
import
mindspore.dataset.vision.c_transforms
as
C
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
visualize_list
,
save_and_check_md5
,
diff_mse
from
util
import
visualize_list
,
save_and_check_md5
,
diff_mse
...
@@ -35,14 +36,14 @@ def test_invert_py(plot=False):
...
@@ -35,14 +36,14 @@ def test_invert_py(plot=False):
logger
.
info
(
"Test Invert Python op"
)
logger
.
info
(
"Test Invert Python op"
)
# Original Images
# Original Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_original
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_original
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
ToTensor
()])
F
.
ToTensor
()])
ds_original
=
ds
.
map
(
input_columns
=
"image"
,
ds_original
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_original
()
)
operations
=
transforms_original
)
ds_original
=
ds_original
.
batch
(
512
)
ds_original
=
ds_original
.
batch
(
512
)
...
@@ -55,15 +56,15 @@ def test_invert_py(plot=False):
...
@@ -55,15 +56,15 @@ def test_invert_py(plot=False):
axis
=
0
)
axis
=
0
)
# Color Inverted Images
# Color Inverted Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_invert
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_invert
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Resize
((
224
,
224
)),
F
.
Resize
((
224
,
224
)),
F
.
Invert
(),
F
.
Invert
(),
F
.
ToTensor
()])
F
.
ToTensor
()])
ds_invert
=
ds
.
map
(
input_columns
=
"image"
,
ds_invert
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_invert
()
)
operations
=
transforms_invert
)
ds_invert
=
ds_invert
.
batch
(
512
)
ds_invert
=
ds_invert
.
batch
(
512
)
...
@@ -92,7 +93,7 @@ def test_invert_c(plot=False):
...
@@ -92,7 +93,7 @@ def test_invert_c(plot=False):
logger
.
info
(
"Test Invert cpp op"
)
logger
.
info
(
"Test Invert cpp op"
)
# Original Images
# Original Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_original
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
])]
transforms_original
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
])]
...
@@ -110,7 +111,7 @@ def test_invert_c(plot=False):
...
@@ -110,7 +111,7 @@ def test_invert_c(plot=False):
axis
=
0
)
axis
=
0
)
# Invert Images
# Invert Images
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transform_invert
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
]),
transform_invert
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
]),
C
.
Invert
()]
C
.
Invert
()]
...
@@ -144,7 +145,7 @@ def test_invert_py_c(plot=False):
...
@@ -144,7 +145,7 @@ def test_invert_py_c(plot=False):
logger
.
info
(
"Test Invert cpp and python op"
)
logger
.
info
(
"Test Invert cpp and python op"
)
# Invert Images in cpp
# Invert Images in cpp
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
...
@@ -162,17 +163,17 @@ def test_invert_py_c(plot=False):
...
@@ -162,17 +163,17 @@ def test_invert_py_c(plot=False):
axis
=
0
)
axis
=
0
)
# invert images in python
# invert images in python
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
))])
transforms_p_invert
=
F
.
ComposeOp
([
lambda
img
:
img
.
astype
(
np
.
uint8
),
transforms_p_invert
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
lambda
img
:
img
.
astype
(
np
.
uint8
),
F
.
ToPIL
(),
F
.
ToPIL
(),
F
.
Invert
(),
F
.
Invert
(),
np
.
array
])
np
.
array
])
ds_p_invert
=
ds
.
map
(
input_columns
=
"image"
,
ds_p_invert
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_p_invert
()
)
operations
=
transforms_p_invert
)
ds_p_invert
=
ds_p_invert
.
batch
(
512
)
ds_p_invert
=
ds_p_invert
.
batch
(
512
)
...
@@ -203,7 +204,7 @@ def test_invert_one_channel():
...
@@ -203,7 +204,7 @@ def test_invert_one_channel():
c_op
=
C
.
Invert
()
c_op
=
C
.
Invert
()
try
:
try
:
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
ds
=
ds
.
map
(
input_columns
=
[
"image"
],
operations
=
[
C
.
Decode
(),
operations
=
[
C
.
Decode
(),
C
.
Resize
((
224
,
224
)),
C
.
Resize
((
224
,
224
)),
...
@@ -224,13 +225,13 @@ def test_invert_md5_py():
...
@@ -224,13 +225,13 @@ def test_invert_md5_py():
logger
.
info
(
"Test Invert python op with md5 check"
)
logger
.
info
(
"Test Invert python op with md5 check"
)
# Generate dataset
# Generate dataset
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_invert
=
F
.
ComposeOp
([
F
.
Decode
(),
transforms_invert
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
([
F
.
Decode
(),
F
.
Invert
(),
F
.
Invert
(),
F
.
ToTensor
()])
F
.
ToTensor
()])
data
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_invert
()
)
data
=
ds
.
map
(
input_columns
=
"image"
,
operations
=
transforms_invert
)
# Compare with expected md5 from images
# Compare with expected md5 from images
filename
=
"invert_01_result_py.npz"
filename
=
"invert_01_result_py.npz"
save_and_check_md5
(
data
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
save_and_check_md5
(
data
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
...
@@ -243,7 +244,7 @@ def test_invert_md5_c():
...
@@ -243,7 +244,7 @@ def test_invert_md5_c():
logger
.
info
(
"Test Invert cpp op with md5 check"
)
logger
.
info
(
"Test Invert cpp op with md5 check"
)
# Generate dataset
# Generate dataset
ds
=
de
.
ImageFolderDataset
V2
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
ds
=
de
.
ImageFolderDataset
(
dataset_dir
=
DATA_DIR
,
shuffle
=
False
)
transforms_invert
=
[
C
.
Decode
(),
transforms_invert
=
[
C
.
Decode
(),
C
.
Resize
(
size
=
[
224
,
224
]),
C
.
Resize
(
size
=
[
224
,
224
]),
...
...
tests/ut/python/dataset/test_linear_transformation.py
浏览文件 @
c45f79d3
...
@@ -17,7 +17,8 @@ Testing LinearTransformation op in DE
...
@@ -17,7 +17,8 @@ Testing LinearTransformation op in DE
"""
"""
import
numpy
as
np
import
numpy
as
np
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.py_transforms
as
py_vision
import
mindspore.dataset.transforms.py_transforms
import
mindspore.dataset.vision.py_transforms
as
py_vision
from
mindspore
import
log
as
logger
from
mindspore
import
log
as
logger
from
util
import
diff_mse
,
visualize_list
,
save_and_check_md5
from
util
import
diff_mse
,
visualize_list
,
save_and_check_md5
...
@@ -46,11 +47,11 @@ def test_linear_transformation_op(plot=False):
...
@@ -46,11 +47,11 @@ def test_linear_transformation_op(plot=False):
py_vision
.
CenterCrop
([
height
,
weight
]),
py_vision
.
CenterCrop
([
height
,
weight
]),
py_vision
.
ToTensor
()
py_vision
.
ToTensor
()
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
# First dataset
# First dataset
data1
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data1
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
# Note: if transformation matrix is diagonal matrix with all 1 in diagonal,
# Note: if transformation matrix is diagonal matrix with all 1 in diagonal,
# the output matrix in expected to be the same as the input matrix.
# the output matrix in expected to be the same as the input matrix.
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
...
@@ -58,7 +59,7 @@ def test_linear_transformation_op(plot=False):
...
@@ -58,7 +59,7 @@ def test_linear_transformation_op(plot=False):
# Second dataset
# Second dataset
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
image_transformed
=
[]
image_transformed
=
[]
image
=
[]
image
=
[]
...
@@ -96,8 +97,8 @@ def test_linear_transformation_md5():
...
@@ -96,8 +97,8 @@ def test_linear_transformation_md5():
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
py_vision
.
LinearTransformation
(
transformation_matrix
,
mean_vector
)
py_vision
.
LinearTransformation
(
transformation_matrix
,
mean_vector
)
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
# Compare with expected md5 from images
# Compare with expected md5 from images
filename
=
"linear_transformation_01_result.npz"
filename
=
"linear_transformation_01_result.npz"
...
@@ -126,8 +127,8 @@ def test_linear_transformation_exception_01():
...
@@ -126,8 +127,8 @@ def test_linear_transformation_exception_01():
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
py_vision
.
LinearTransformation
(
None
,
mean_vector
)
py_vision
.
LinearTransformation
(
None
,
mean_vector
)
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
except
TypeError
as
e
:
except
TypeError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"Argument transformation_matrix with value None is not of type (<class 'numpy.ndarray'>,)"
in
str
(
e
)
assert
"Argument transformation_matrix with value None is not of type (<class 'numpy.ndarray'>,)"
in
str
(
e
)
...
@@ -155,8 +156,8 @@ def test_linear_transformation_exception_02():
...
@@ -155,8 +156,8 @@ def test_linear_transformation_exception_02():
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
py_vision
.
LinearTransformation
(
transformation_matrix
,
None
)
py_vision
.
LinearTransformation
(
transformation_matrix
,
None
)
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
except
TypeError
as
e
:
except
TypeError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"Argument mean_vector with value None is not of type (<class 'numpy.ndarray'>,)"
in
str
(
e
)
assert
"Argument mean_vector with value None is not of type (<class 'numpy.ndarray'>,)"
in
str
(
e
)
...
@@ -185,8 +186,8 @@ def test_linear_transformation_exception_03():
...
@@ -185,8 +186,8 @@ def test_linear_transformation_exception_03():
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
py_vision
.
LinearTransformation
(
transformation_matrix
,
mean_vector
)
py_vision
.
LinearTransformation
(
transformation_matrix
,
mean_vector
)
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
except
ValueError
as
e
:
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"square matrix"
in
str
(
e
)
assert
"square matrix"
in
str
(
e
)
...
@@ -215,8 +216,8 @@ def test_linear_transformation_exception_04():
...
@@ -215,8 +216,8 @@ def test_linear_transformation_exception_04():
py_vision
.
ToTensor
(),
py_vision
.
ToTensor
(),
py_vision
.
LinearTransformation
(
transformation_matrix
,
mean_vector
)
py_vision
.
LinearTransformation
(
transformation_matrix
,
mean_vector
)
]
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
transform
=
mindspore
.
dataset
.
transforms
.
py_transforms
.
Compose
(
transforms
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
()
)
data1
=
data1
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
)
except
ValueError
as
e
:
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"should match"
in
str
(
e
)
assert
"should match"
in
str
(
e
)
...
...
tests/ut/python/dataset/test_minddataset.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_mixup_label_smoothing.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_mixup_op.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_normalizeOp.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_onehot_op.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_opt.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_opt_pass.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_pad.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_paddeddataset.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_profiling.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_pyfunc.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_affine.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_apply.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_choice.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_color.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_color_adjust.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_crop.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_crop_and_resize.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_crop_and_resize_with_bbox.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_crop_decode_resize.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_crop_with_bbox.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_erasing.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_grayscale.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_horizontal_flip.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_horizontal_flip_with_bbox.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_order.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_perspective.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_posterize.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_resize.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_resize_with_bbox.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_rotation.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_select_subpolicy.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_sharpness.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_solarize_op.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_vertical_flip.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_random_vertical_flip_with_bbox.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_repeat.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_rescale_op.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_resize.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_resize_with_bbox.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_rgb_hsv.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_serdes_dataset.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_skip.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_soft_dvpp.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_ten_crop.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_text_basic_tokenizer.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_text_bert_tokenizer.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_text_jieba_tokenizer.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_text_tokenizer.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_text_wordpiece_tokenizer.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_to_pil.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_to_type.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_type_cast.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_uniform_augment.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/test_var_batch_map.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
tests/ut/python/dataset/util.py
浏览文件 @
c45f79d3
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录