提交 c3d9f180 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1176 fix validator for transpose

Merge pull request !1176 from jiangjinsheng/issue_transpose
......@@ -461,12 +461,12 @@ class Transpose(PrimitiveWithInfer):
x_shape = x['shape']
p_value = perm['value']
x_type = x['dtype']
if len(x_shape) != len(p_value):
raise ValueError('The dimension of x and perm must be equal.')
validator.check_value_type("p_value", p_value, [tuple], self.name)
validator.check_subclass("x_type", x_type, mstype.tensor, self.name)
if len(x_shape) != len(p_value):
raise ValueError('The dimension of x and perm must be equal.')
tmp = list(p_value)
for i, dim in enumerate(p_value):
validator.check_integer("perm[%d]" % i, dim, 0, Rel.GE, self.name)
......@@ -2165,7 +2165,7 @@ class SpaceToBatch(PrimitiveWithInfer):
of the input are zero padded according to paddings if necessary.
Args:
block_size (int): The block size of dividing block with value >= 1.
block_size (int): The block size of dividing block with value >= 2.
paddings (list): The padding value for H and W dimension, containing 2 sub list, each containing 2 int value.
All values must be >= 0. paddings[i] specifies the paddings for spatial dimension i, which corresponds to
input dimension i+2. It is required that input_shape[i+2]+paddings[i][0]+paddings[i][1] is divisible
......@@ -2199,10 +2199,11 @@ class SpaceToBatch(PrimitiveWithInfer):
def __init__(self, block_size, paddings):
"""Init SpaceToBatch"""
validator.check_value_type('block_size', block_size, [int], self.name)
validator.check('block_size', block_size, '', 1, Rel.GT, self.name)
validator.check('block_size', block_size, '', 2, Rel.GE, self.name)
self.block_size = block_size
validator.check('paddings shape', np.array(paddings).shape, '', (2, 2), Rel.EQ, self.name)
for elem in itertools.chain(*paddings):
validator.check_integer('paddings element', elem, 0, Rel.GE, self.name)
validator.check_value_type('paddings element', elem, [int], self.name)
self.paddings = paddings
......@@ -2266,10 +2267,11 @@ class BatchToSpace(PrimitiveWithInfer):
def __init__(self, block_size, crops):
"""Init BatchToSpace"""
validator.check_value_type('block_size', block_size, [int], self.name)
validator.check('block_size', block_size, '', 1, Rel.GT, self.name)
validator.check('block_size', block_size, '', 1, Rel.GE, self.name)
self.block_size = block_size
validator.check('crops shape', np.array(crops).shape, '', (2, 2))
for elem in itertools.chain(*crops):
validator.check_integer('crops element', elem, 0, Rel.GE, self.name)
validator.check_value_type('crops element', elem, [int], self.name)
self.crops = crops
......
......@@ -64,7 +64,7 @@ def test_parameter_update_int32_and_tensor():
param_step = train_network.parameters_dict()['global_step']
update_global_step = ParameterUpdate(param_step)
input_step = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32)
input_step = Tensor(np.array([1000]), mstype.float32)
_executor.compile(update_global_step, input_step)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册