Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
bf6246e6
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bf6246e6
编写于
5月 12, 2020
作者:
C
chenzomi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add quant combined
上级
03459950
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
773 addition
and
1 deletion
+773
-1
mindspore/nn/cell.py
mindspore/nn/cell.py
+1
-1
mindspore/nn/layer/combined.py
mindspore/nn/layer/combined.py
+182
-0
mindspore/train/quant/__init__.py
mindspore/train/quant/__init__.py
+26
-0
mindspore/train/quant/quant.py
mindspore/train/quant/quant.py
+262
-0
tests/ut/python/train/quant/mobilenetv2.py
tests/ut/python/train/quant/mobilenetv2.py
+100
-0
tests/ut/python/train/quant/mobilenetv2_combined.py
tests/ut/python/train/quant/mobilenetv2_combined.py
+108
-0
tests/ut/python/train/quant/test_quant.py
tests/ut/python/train/quant/test_quant.py
+94
-0
未找到文件。
mindspore/nn/cell.py
浏览文件 @
bf6246e6
...
@@ -97,7 +97,7 @@ class Cell:
...
@@ -97,7 +97,7 @@ class Cell:
After invoked, can get all the cell's children's name perfix by '_param_perfix'.
After invoked, can get all the cell's children's name perfix by '_param_perfix'.
"""
"""
cells
=
self
.
cells_and_names
cells
=
self
.
cells_and_names
()
for
cell_name
,
cell
in
cells
:
for
cell_name
,
cell
in
cells
:
cell
.
_param_perfix
=
cell_name
cell
.
_param_perfix
=
cell_name
...
...
mindspore/nn/layer/combined.py
0 → 100644
浏览文件 @
bf6246e6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Use combination of Conv, Dense, Relu, Batchnorm."""
from
.normalization
import
BatchNorm2d
from
.activation
import
get_activation
from
..cell
import
Cell
from
.
import
conv
,
basic
from
..._checkparam
import
ParamValidator
as
validator
__all__
=
[
'Conv2d'
,
'Dense'
]
class
Conv2d
(
Cell
):
r
"""
A combination of convolution, Batchnorm, activation layer.
For a more Detailed overview of Conv2d op.
Args:
in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple]): The data type is int or tuple with 2 integers. Specifies the height
and width of the 2D convolution window. Single int means the value if for both height and width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (int): Specifies stride for all spatial dimensions with the same value. Value of stride should be
greater or equal to 1 but bounded by the height and width of the input. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): Specifying the dilation rate to use for dilated convolution. If set to be :math:`k > 1`,
there will be :math:`k - 1` pixels skipped for each sampling location. Its value should be greater
or equal to 1 and bounded by the height and width of the input. Default: 1.
group (int): Split filter into groups, `in_ channels` and `out_channels` should be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
batchnorm (bool): Specifies to used batchnorm or not. Default: None.
activation (string): Specifies activation type. The optional values are as following:
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> net = combined.Conv2d(120, 240, 4, batchnorm=True, activation='ReLU')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape()
(1, 240, 1024, 640)
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
,
dilation
=
1
,
group
=
1
,
has_bias
=
False
,
weight_init
=
'normal'
,
bias_init
=
'zeros'
,
batchnorm
=
None
,
activation
=
None
):
super
(
Conv2d
,
self
).
__init__
()
self
.
conv
=
conv
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
pad_mode
,
padding
,
dilation
,
group
,
has_bias
,
weight_init
,
bias_init
)
self
.
has_bn
=
batchnorm
is
not
None
self
.
has_act
=
activation
is
not
None
self
.
batchnorm
=
batchnorm
if
batchnorm
is
True
:
self
.
batchnorm
=
BatchNorm2d
(
out_channels
)
elif
batchnorm
is
not
None
:
validator
.
check_isinstance
(
'batchnorm'
,
batchnorm
,
(
BatchNorm2d
,))
self
.
activation
=
get_activation
(
activation
)
def
construct
(
self
,
x
):
x
=
self
.
conv
(
x
)
if
self
.
has_bn
:
x
=
self
.
batchnorm
(
x
)
if
self
.
has_act
:
x
=
self
.
activation
(
x
)
return
x
class
Dense
(
Cell
):
r
"""
A combination of Dense, Batchnorm, activation layer.
For a more Detailed overview of Dense op.
Args:
in_channels (int): The number of channels in the input space.
out_channels (int): The number of channels in the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
batchnorm (bool): Specifies to used batchnorm or not. Default: None.
activation (string): Specifies activation type. The optional values are as following:
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
Outputs:
Tensor of shape :math:`(N, out\_channels)`.
Examples:
>>> net = nn.Dense(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
weight_init
=
'normal'
,
bias_init
=
'zeros'
,
has_bias
=
True
,
batchnorm
=
None
,
activation
=
None
):
super
(
Dense
,
self
).
__init__
()
self
.
dense
=
basic
.
Dense
(
in_channels
,
out_channels
,
weight_init
,
bias_init
,
has_bias
)
self
.
has_bn
=
batchnorm
is
not
None
self
.
has_act
=
activation
is
not
None
if
batchnorm
is
True
:
self
.
batchnorm
=
BatchNorm2d
(
out_channels
)
elif
batchnorm
is
not
None
:
validator
.
check_isinstance
(
'batchnorm'
,
batchnorm
,
(
BatchNorm2d
,))
self
.
activation
=
get_activation
(
activation
)
def
construct
(
self
,
x
):
x
=
self
.
dense
(
x
)
if
self
.
has_bn
:
x
=
self
.
batchnorm
(
x
)
if
self
.
has_act
:
x
=
self
.
activation
(
x
)
return
x
mindspore/train/quant/__init__.py
0 → 100644
浏览文件 @
bf6246e6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
quantization.
User can use aware quantization to train a model. Mindspore supports quantization aware training,
which models quantization errors in both the forward and backward passes using fake-quantization
ops. Note that the entire computation is carried out in floating point. At the end of quantization
aware training, Mindspore provides conversion functions to convert the trained model into lower precision.
"""
from
.quant
import
convert_quant_network
__all__
=
[
"convert_quant_network"
]
mindspore/train/quant/quant.py
0 → 100644
浏览文件 @
bf6246e6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""aware quantization."""
import
re
from
...
import
nn
from
...
import
ops
from
..._checkparam
import
ParamValidator
as
validator
from
..._checkparam
import
Rel
from
...nn.layer
import
combined
from
...nn.layer
import
quant
_ACTIVATION_MAP
=
{
nn
.
ReLU
:
quant
.
ReLUQuant
,
nn
.
ReLU6
:
quant
.
ReLU6Quant
,
nn
.
HSigmoid
:
quant
.
HSigmoidQuant
,
nn
.
HSwish
:
quant
.
HSwishQuant
}
class
_AddFakeQuantInputOutput
(
nn
.
Cell
):
"""
Add FakeQuant at input and output of the Network. Only support one input and one output case.
"""
def
__init__
(
self
,
network
,
quant_delay
=
0
):
super
(
_AddFakeQuantInputOutput
,
self
).
__init__
(
auto_prefix
=
False
)
self
.
network
=
network
self
.
fake_quant_input
=
quant
.
FakeQuantWithMinMax
(
min_init
=-
6
,
max_init
=
6
,
quant_delay
=
quant_delay
,
ema
=
True
)
self
.
fake_quant_input
.
update_parameters_name
(
'fake_quant_input'
)
self
.
fake_quant_output
=
quant
.
FakeQuantWithMinMax
(
min_init
=-
6
,
max_init
=
6
,
quant_delay
=
quant_delay
,
ema
=
True
)
self
.
fake_quant_output
.
update_parameters_name
(
'fake_quant_output'
)
def
construct
(
self
,
data
):
data
=
self
.
fake_quant_input
(
data
)
output
=
self
.
network
(
data
)
output
=
self
.
fake_quant_output
(
output
)
return
output
class
_AddFakeQuantAfterSubCell
(
nn
.
Cell
):
"""
Add FakeQuant after of the sub Cell.
"""
def
__init__
(
self
,
subcell
,
quant_delay
=
0
,
num_bits
=
8
):
super
(
_AddFakeQuantAfterSubCell
,
self
).
__init__
(
auto_prefix
=
False
)
self
.
subcell
=
subcell
self
.
fake_quant_act
=
quant
.
FakeQuantWithMinMax
(
min_init
=-
6
,
max_init
=
6
,
num_bits
=
num_bits
,
quant_delay
=
quant_delay
,
ema
=
True
)
def
construct
(
self
,
*
data
):
output
=
self
.
subcell
(
*
data
)
output
=
self
.
fake_quant_act
(
output
)
return
output
class
ConvertToQuantNetwork
:
"""
Convert network to quantization aware network
"""
__quant_op_name__
=
[
"TensorAdd"
,
"Sub"
,
"Mul"
,
"RealDiv"
]
def
__init__
(
self
,
network
,
quant_delay
=
0
,
bn_fold
=
False
,
freeze_bn
=
0
,
weight_bits
=
8
,
act_bits
=
8
,
per_channel
=
False
,
symmetric
=
False
,
narrow_range
=
False
):
self
.
network
=
validator
.
check_isinstance
(
'network'
,
network
,
(
nn
.
Cell
,))
self
.
quant_delay
=
validator
.
check_integer
(
"quant delay"
,
quant_delay
,
0
,
Rel
.
GE
)
self
.
freeze_bn
=
validator
.
check_integer
(
"freeze bn"
,
freeze_bn
,
0
,
Rel
.
GE
)
self
.
weight_bits
=
validator
.
check_integer
(
"weights bit"
,
weight_bits
,
0
,
Rel
.
GE
)
self
.
act_bits
=
validator
.
check_integer
(
"activations bit"
,
act_bits
,
0
,
Rel
.
GE
)
self
.
bn_fold
=
validator
.
check_bool
(
"bn fold"
,
bn_fold
)
self
.
per_channel
=
validator
.
check_bool
(
"per channel"
,
per_channel
)
self
.
symmetric
=
validator
.
check_bool
(
"symmetric"
,
symmetric
)
self
.
narrow_range
=
validator
.
check_bool
(
"narrow range"
,
narrow_range
)
def
_convert_op_name
(
self
,
name
):
pattern
=
re
.
compile
(
r
'([A-Z]{1})'
)
name_new
=
re
.
sub
(
pattern
,
r
'_\1'
,
name
).
lower
()
if
name_new
[
0
]
==
'_'
:
name_new
=
name_new
[
1
:]
return
name_new
def
run
(
self
):
self
.
network
.
update_cell_prefix
()
network
=
self
.
_convert_subcells2quant
(
self
.
network
)
return
network
def
_convert_subcells2quant
(
self
,
network
):
"""
convet sub cell to quant cell
"""
cells
=
network
.
name_cells
()
change
=
False
for
name
in
cells
:
subcell
=
cells
[
name
]
if
subcell
==
network
:
continue
elif
isinstance
(
subcell
,
combined
.
Conv2d
):
prefix
=
subcell
.
param_prefix
new_subcell
=
self
.
_convert_conv
(
subcell
)
new_subcell
.
update_parameters_name
(
prefix
+
'.'
)
network
.
insert_child_to_cell
(
name
,
new_subcell
)
change
=
True
elif
isinstance
(
subcell
,
combined
.
Dense
):
prefix
=
subcell
.
param_prefix
new_subcell
=
self
.
_convert_dense
(
subcell
)
new_subcell
.
update_parameters_name
(
prefix
+
'.'
)
network
.
insert_child_to_cell
(
name
,
new_subcell
)
change
=
True
else
:
self
.
_convert_subcells2quant
(
subcell
)
if
isinstance
(
network
,
nn
.
SequentialCell
)
and
change
:
network
.
cell_list
=
list
(
network
.
cells
())
# tensoradd to tensoradd quant
add_list
=
[]
for
name
in
network
.
__dict__
:
if
name
[
0
]
==
'_'
:
continue
attr
=
network
.
__dict__
[
name
]
if
isinstance
(
attr
,
ops
.
Primitive
)
and
attr
.
name
in
ConvertToQuantNetwork
.
__quant_op_name__
:
add_list
.
append
((
name
,
attr
))
for
name
,
prim_op
in
add_list
:
prefix
=
name
add_quant
=
_AddFakeQuantAfterSubCell
(
prim_op
)
# quant.TensorAddQuant()
prefix
=
'.'
.
join
([
network
.
param_prefix
,
self
.
_convert_op_name
(
prim_op
.
name
)])
add_quant
.
update_parameters_name
(
prefix
+
'.'
)
del
network
.
__dict__
[
name
]
network
.
insert_child_to_cell
(
name
,
add_quant
)
return
network
def
_convert_conv
(
self
,
subcell
):
"""
convet conv cell to combine cell
"""
conv_inner
=
subcell
.
conv
bn_inner
=
subcell
.
batchnorm
if
subcell
.
batchnorm
is
not
None
and
self
.
bn_fold
:
conv_inner
=
quant
.
Conv2dBatchNormQuant
(
conv_inner
.
in_channels
,
conv_inner
.
out_channels
,
kernel_size
=
conv_inner
.
kernel_size
,
stride
=
conv_inner
.
stride
,
pad_mode
=
conv_inner
.
pad_mode
,
padding
=
conv_inner
.
padding
,
dilation
=
conv_inner
.
dilation
,
group
=
conv_inner
.
group
,
eps
=
bn_inner
.
eps
,
momentum
=
bn_inner
.
momentum
,
quant_delay
=
self
.
quant_delay
,
freeze_bn
=
self
.
freeze_bn
,
per_channel
=
self
.
per_channel
,
num_bits
=
self
.
weight_bits
,
fake
=
True
,
symmetric
=
self
.
symmetric
,
narrow_range
=
self
.
narrow_range
)
del
subcell
.
batchnorm
subcell
.
batchnorm
=
None
subcell
.
has_bn
=
False
else
:
conv_inner
=
quant
.
Conv2dQuant
(
conv_inner
.
in_channels
,
conv_inner
.
out_channels
,
kernel_size
=
conv_inner
.
kernel_size
,
stride
=
conv_inner
.
stride
,
pad_mode
=
conv_inner
.
pad_mode
,
padding
=
conv_inner
.
padding
,
dilation
=
conv_inner
.
dilation
,
group
=
conv_inner
.
group
,
has_bias
=
conv_inner
.
has_bias
,
quant_delay
=
self
.
quant_delay
,
per_channel
=
self
.
per_channel
,
num_bits
=
self
.
weight_bits
,
symmetric
=
self
.
symmetric
,
narrow_range
=
self
.
narrow_range
)
subcell
.
conv
=
conv_inner
if
subcell
.
activation
is
not
None
:
subcell
.
activation
=
self
.
_convert_activation
(
subcell
.
activation
)
else
:
subcell
=
_AddFakeQuantAfterSubCell
(
subcell
)
return
subcell
def
_convert_dense
(
self
,
subcell
):
"""
convert dense cell to combine dense cell
"""
dense_inner
=
subcell
.
dense
dense_inner
=
quant
.
DenseQuant
(
dense_inner
.
in_channels
,
dense_inner
.
out_channels
,
has_bias
=
dense_inner
.
has_bias
,
quant_delay
=
self
.
quant_delay
,
per_channel
=
self
.
per_channel
,
num_bits
=
self
.
weight_bits
)
subcell
.
dense
=
dense_inner
if
subcell
.
activation
is
not
None
:
subcell
.
activation
=
self
.
_convert_activation
(
subcell
.
activation
)
return
subcell
def
_convert_activation
(
self
,
activation
):
act_class
=
activation
.
__class__
if
act_class
not
in
_ACTIVATION_MAP
:
raise
ValueError
(
"Unsupported activation in auto Quant: "
,
act_class
)
return
_ACTIVATION_MAP
[
act_class
](
num_bits
=
self
.
act_bits
,
quant_delay
=
self
.
quant_delay
)
def
convert_quant_network
(
network
,
quant_delay
=
0
,
bn_fold
=
False
,
freeze_bn
=
0
,
weight_bits
=
8
,
act_bits
=
8
,
per_channel
=
False
,
symmetric
=
False
,
narrow_range
=
False
):
r
"""
Create aware quantizaiton training network.
Args:
network (Cell): Obtain a pipeline through network for saving graph summary.
quant_delay (int): Number of steps after which weights and activations are quantized during eval. Default: 0.
bn_fold (bool): Flag to used bn fold ops for simulation inference operation. Default: False.
freeze_bn (bool): Number of steps after which BN parameters used total mean and variance. Default: 0.
weight_bits (int): Number of bits to use for quantizing weights. Default: 8.
act_bits (int): Number of bits to use for quantizing activations. Default: 8.
per_channel (bool): Quantization granularity based on layer or on channel. Default: False.
symmetric (bool): Quantization algorithm use symmetric or not. Default: False.
narrow_range (bool): Quantization algorithm use narrow range or not. Default: False.
returns:
Cell, Network which has change to aware quantization training network.
"""
net
=
ConvertToQuantNetwork
(
network
,
quant_delay
,
bn_fold
,
freeze_bn
,
weight_bits
,
act_bits
,
per_channel
,
symmetric
,
narrow_range
)
return
net
.
run
()
tests/ut/python/train/quant/mobilenetv2.py
0 → 100644
浏览文件 @
bf6246e6
"""MobileNetV2"""
from
mindspore
import
nn
from
mindspore.ops
import
operations
as
P
def
make_divisible
(
input_x
,
div_by
=
8
):
return
int
((
input_x
+
div_by
)
//
div_by
)
def
_conv_bn
(
in_channel
,
out_channel
,
ksize
,
stride
=
1
):
"""Get a conv2d batchnorm and relu layer."""
return
nn
.
SequentialCell
(
[
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
ksize
,
stride
=
stride
),
nn
.
BatchNorm2d
(
out_channel
)])
class
InvertedResidual
(
nn
.
Cell
):
def
__init__
(
self
,
inp
,
oup
,
stride
,
expend_ratio
):
super
(
InvertedResidual
,
self
).
__init__
()
self
.
stride
=
stride
assert
stride
in
[
1
,
2
]
hidden_dim
=
int
(
inp
*
expend_ratio
)
self
.
use_res_connect
=
self
.
stride
==
1
and
inp
==
oup
if
expend_ratio
==
1
:
self
.
conv
=
nn
.
SequentialCell
([
nn
.
Conv2d
(
hidden_dim
,
hidden_dim
,
3
,
stride
,
group
=
hidden_dim
),
nn
.
BatchNorm2d
(
hidden_dim
),
nn
.
ReLU6
(),
nn
.
Conv2d
(
hidden_dim
,
oup
,
1
,
1
),
nn
.
BatchNorm2d
(
oup
)
])
else
:
self
.
conv
=
nn
.
SequentialCell
([
nn
.
Conv2d
(
inp
,
hidden_dim
,
1
,
1
),
nn
.
BatchNorm2d
(
hidden_dim
),
nn
.
ReLU6
(),
nn
.
Conv2d
(
hidden_dim
,
hidden_dim
,
3
,
stride
,
group
=
hidden_dim
),
nn
.
BatchNorm2d
(
hidden_dim
),
nn
.
ReLU6
(),
nn
.
Conv2d
(
hidden_dim
,
oup
,
1
,
1
),
nn
.
BatchNorm2d
(
oup
)
])
def
construct
(
self
,
input_x
):
out
=
self
.
conv
(
input_x
)
if
self
.
use_res_connect
:
out
=
input_x
+
out
return
out
class
MobileNetV2
(
nn
.
Cell
):
def
__init__
(
self
,
num_class
=
1000
,
input_size
=
224
,
width_mul
=
1.
):
super
(
MobileNetV2
,
self
).
__init__
()
block
=
InvertedResidual
input_channel
=
32
last_channel
=
1280
inverted_residual_setting
=
[
[
1
,
16
,
1
,
1
],
[
6
,
24
,
2
,
2
],
[
6
,
32
,
3
,
2
],
[
6
,
64
,
4
,
2
],
[
6
,
96
,
3
,
1
],
[
6
,
160
,
3
,
2
],
[
6
,
230
,
1
,
1
],
]
if
width_mul
>
1.0
:
last_channel
=
make_divisible
(
last_channel
*
width_mul
)
self
.
last_channel
=
last_channel
features
=
[
_conv_bn
(
3
,
input_channel
,
3
,
2
)]
for
t
,
c
,
n
,
s
in
inverted_residual_setting
:
out_channel
=
make_divisible
(
c
*
width_mul
)
if
t
>
1
else
c
for
i
in
range
(
n
):
if
i
==
0
:
features
.
append
(
block
(
input_channel
,
out_channel
,
s
,
t
))
else
:
features
.
append
(
block
(
input_channel
,
out_channel
,
1
,
t
))
input_channel
=
out_channel
features
.
append
(
_conv_bn
(
input_channel
,
self
.
last_channel
,
1
))
self
.
features
=
nn
.
SequentialCell
(
features
)
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
False
)
self
.
classifier
=
nn
.
Dense
(
self
.
last_channel
,
num_class
)
def
construct
(
self
,
input_x
):
out
=
input_x
out
=
self
.
features
(
out
)
out
=
self
.
mean
(
out
,
(
2
,
3
))
out
=
self
.
classifier
(
out
)
return
out
tests/ut/python/train/quant/mobilenetv2_combined.py
0 → 100644
浏览文件 @
bf6246e6
"""mobile net v2"""
from
mindspore
import
nn
from
mindspore.ops
import
operations
as
P
from
mindspore.nn.layer
import
combined
def
make_divisible
(
input_x
,
div_by
=
8
):
return
int
((
input_x
+
div_by
)
//
div_by
)
def
_conv_bn
(
in_channel
,
out_channel
,
ksize
,
stride
=
1
):
"""Get a conv2d batchnorm and relu layer."""
return
nn
.
SequentialCell
(
[
combined
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
ksize
,
stride
=
stride
,
batchnorm
=
True
)])
class
InvertedResidual
(
nn
.
Cell
):
def
__init__
(
self
,
inp
,
oup
,
stride
,
expend_ratio
):
super
(
InvertedResidual
,
self
).
__init__
()
self
.
stride
=
stride
assert
stride
in
[
1
,
2
]
hidden_dim
=
int
(
inp
*
expend_ratio
)
self
.
use_res_connect
=
self
.
stride
==
1
and
inp
==
oup
if
expend_ratio
==
1
:
self
.
conv
=
nn
.
SequentialCell
([
combined
.
Conv2d
(
hidden_dim
,
hidden_dim
,
3
,
stride
,
group
=
hidden_dim
,
batchnorm
=
True
,
activation
=
'relu6'
),
combined
.
Conv2d
(
hidden_dim
,
oup
,
1
,
1
,
batchnorm
=
True
)
])
else
:
self
.
conv
=
nn
.
SequentialCell
([
combined
.
Conv2d
(
inp
,
hidden_dim
,
1
,
1
,
batchnorm
=
True
,
activation
=
'relu6'
),
combined
.
Conv2d
(
hidden_dim
,
hidden_dim
,
3
,
stride
,
group
=
hidden_dim
,
batchnorm
=
True
,
activation
=
'relu6'
),
combined
.
Conv2d
(
hidden_dim
,
oup
,
1
,
1
,
batchnorm
=
True
)
])
self
.
add
=
P
.
TensorAdd
()
def
construct
(
self
,
input_x
):
out
=
self
.
conv
(
input_x
)
if
self
.
use_res_connect
:
out
=
self
.
add
(
input_x
,
out
)
return
out
class
MobileNetV2
(
nn
.
Cell
):
def
__init__
(
self
,
num_class
=
1000
,
input_size
=
224
,
width_mul
=
1.
):
super
(
MobileNetV2
,
self
).
__init__
()
block
=
InvertedResidual
input_channel
=
32
last_channel
=
1280
inverted_residual_setting
=
[
[
1
,
16
,
1
,
1
],
[
6
,
24
,
2
,
2
],
[
6
,
32
,
3
,
2
],
[
6
,
64
,
4
,
2
],
[
6
,
96
,
3
,
1
],
[
6
,
160
,
3
,
2
],
[
6
,
230
,
1
,
1
],
]
if
width_mul
>
1.0
:
last_channel
=
make_divisible
(
last_channel
*
width_mul
)
self
.
last_channel
=
last_channel
features
=
[
_conv_bn
(
3
,
input_channel
,
3
,
2
)]
for
t
,
c
,
n
,
s
in
inverted_residual_setting
:
out_channel
=
make_divisible
(
c
*
width_mul
)
if
t
>
1
else
c
for
i
in
range
(
n
):
if
i
==
0
:
features
.
append
(
block
(
input_channel
,
out_channel
,
s
,
t
))
else
:
features
.
append
(
block
(
input_channel
,
out_channel
,
1
,
t
))
input_channel
=
out_channel
features
.
append
(
_conv_bn
(
input_channel
,
self
.
last_channel
,
1
))
self
.
features
=
nn
.
SequentialCell
(
features
)
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
False
)
self
.
classifier
=
combined
.
Dense
(
self
.
last_channel
,
num_class
)
def
construct
(
self
,
input_x
):
out
=
input_x
out
=
self
.
features
(
out
)
out
=
self
.
mean
(
out
,
(
2
,
3
))
out
=
self
.
classifier
(
out
)
return
out
tests/ut/python/train/quant/test_quant.py
0 → 100644
浏览文件 @
bf6246e6
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" tests for quant """
import
numpy
as
np
from
mindspore
import
Tensor
from
mindspore.train.quant
import
quant
as
qat
from
mindspore
import
nn
import
mindspore.ops.operations
as
P
from
mindspore.nn.layer
import
combined
import
mindspore.context
as
context
from
mobilenetv2_combined
import
MobileNetV2
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
class
LeNet5
(
nn
.
Cell
):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def
__init__
(
self
,
num_class
=
10
):
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
conv1
=
combined
.
Conv2d
(
1
,
6
,
kernel_size
=
5
,
batchnorm
=
True
,
activation
=
'relu6'
)
self
.
conv2
=
combined
.
Conv2d
(
6
,
16
,
kernel_size
=
5
,
activation
=
'relu'
)
self
.
fc1
=
combined
.
Dense
(
16
*
5
*
5
,
120
,
activation
=
'relu'
)
self
.
fc2
=
combined
.
Dense
(
120
,
84
,
activation
=
'relu'
)
self
.
fc3
=
combined
.
Dense
(
84
,
self
.
num_class
)
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flattern
=
nn
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
bn
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
flattern
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
fc3
(
x
)
return
x
def
test_qat_lenet
():
net
=
LeNet5
()
net
=
qat
.
convert_quant_network
(
net
,
quant_delay
=
0
,
bn_fold
=
False
,
freeze_bn
=
10000
,
weight_bits
=
8
,
act_bits
=
8
)
def
test_qat_mobile
():
net
=
MobileNetV2
()
img
=
Tensor
(
np
.
ones
((
1
,
3
,
224
,
224
)).
astype
(
np
.
float32
))
net
=
qat
.
convert_quant_network
(
net
,
quant_delay
=
0
,
bn_fold
=
False
,
freeze_bn
=
10000
,
weight_bits
=
8
,
act_bits
=
8
)
net
(
img
)
def
test_qat_mobile_train
():
net
=
MobileNetV2
(
num_class
=
10
)
img
=
Tensor
(
np
.
ones
((
1
,
3
,
224
,
224
)).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
ones
((
1
,
10
)).
astype
(
np
.
float32
))
net
=
qat
.
convert_quant_network
(
net
,
quant_delay
=
0
,
bn_fold
=
False
,
freeze_bn
=
10000
,
weight_bits
=
8
,
act_bits
=
8
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
reduction
=
'mean'
)
optimizer
=
nn
.
Momentum
(
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
net
=
nn
.
WithLossCell
(
net
,
loss
)
net
=
nn
.
TrainOneStepCell
(
net
,
optimizer
)
net
(
img
,
label
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录