提交 bf4c0993 编写于 作者: V VectorSL 提交者: 高东海

edit loss_scale for gpu

上级 0a595b47
......@@ -25,6 +25,7 @@ from ...ops import operations as P
from ...ops.operations import NPUGetFloatStatus, NPUAllocFloatStatus, NPUClearFloatStatus, ReduceSum, LessEqual, \
ControlDepend
from ...common import dtype as mstype
import mindspore.context as context
_grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal()
......@@ -34,6 +35,12 @@ reciprocal = P.Reciprocal()
def tensor_grad_scale(scale, grad):
return grad * F.cast(reciprocal(scale), F.dtype(grad))
_grad_overflow = C.MultitypeFuncGraph("_grad_overflow")
grad_overflow = P.FloatStatus()
@_grad_overflow.register("Tensor")
def _tensor_grad_overflow(grad):
return grad_overflow(grad)
class DynamicLossScaleUpdateCell(Cell):
r"""
......@@ -197,9 +204,15 @@ class TrainOneStepWithLossScaleCell(Cell):
self.optimizer = optimizer
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
self.hyper_map = C.HyperMap()
self.alloc_status = NPUAllocFloatStatus()
self.get_status = NPUGetFloatStatus()
self.clear_status = NPUClearFloatStatus()
if context.get_context("device_target") == "GPU":
self.gpu_target = True
self.float_status = P.FloatStatus()
self.addn = P.AddN()
else:
self.gpu_target = False
self.alloc_status = NPUAllocFloatStatus()
self.get_status = NPUGetFloatStatus()
self.clear_status = NPUClearFloatStatus()
self.reduce_sum = ReduceSum(keep_dims=False)
self.base = Tensor(1, mstype.float32)
self.less_equal = LessEqual()
......@@ -224,10 +237,11 @@ class TrainOneStepWithLossScaleCell(Cell):
def construct(self, data, label, sens=None):
weights = self.weights
loss = self.network(data, label)
# init overflow buffer
init = self.alloc_status()
# clear overflow buffer
self.clear_status(init)
if not self.gpu_target:
# init overflow buffer
init = self.alloc_status()
# clear overflow buffer
self.clear_status(init)
if sens is None:
scaling_sens = self.loss_scale
else:
......@@ -237,10 +251,14 @@ class TrainOneStepWithLossScaleCell(Cell):
if self.reducer_flag:
# apply grad reducer on grads
grads = self.grad_reducer(grads)
# get the overflow buffer
self.get_status(init)
# sum overflow buffer elements, 0:not overflow , >0:overflow
flag_sum = self.reduce_sum(init, (0,))
if not self.gpu_target:
# get the overflow buffer
self.get_status(init)
# sum overflow buffer elements, 0:not overflow , >0:overflow
flag_sum = self.reduce_sum(init, (0,))
else:
flag_sum = self.hyper_map(F.partial(_grad_overflow), grads)
flag_sum = self.addn(flag_sum)
if self.is_distributed:
# sum overflow flag over devices
flag_reduce = self.allreduce(flag_sum)
......
......@@ -44,7 +44,7 @@ from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul
LogicalNot, LogicalOr, MatMul, Maximum,
Minimum, Mul, Neg, NMSWithMask, NotEqual,
NPUAllocFloatStatus, NPUClearFloatStatus,
NPUGetFloatStatus, Pow, RealDiv,
NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus,
Reciprocal, CumSum,
Sin, Sqrt, Rsqrt,
Square, Sub, TensorAdd, Sign, Round)
......@@ -151,6 +151,10 @@ __all__ = [
'Neg',
'Slice',
'DType',
'IsNan',
'IsInf',
'IsFinite',
'FloatStatus',
'NPUAllocFloatStatus',
'NPUGetFloatStatus',
'NPUClearFloatStatus',
......
......@@ -1541,6 +1541,89 @@ class LogicalOr(_LogicBinaryOp):
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.prim_name())
class IsNan(PrimitiveWithInfer):
"""
Judging which elements are nan for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsNan"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class IsInf(PrimitiveWithInfer):
"""
Judging which elements are inf or -inf for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsInf"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class IsFinite(PrimitiveWithInfer):
"""
Judging which elements are finite for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsFinite"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class FloatStatus(PrimitiveWithInfer):
"""
Determine if the elements contains nan, inf or -inf
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the shape of `(1,)`.
"""
@prim_attr_register
def __init__(self):
"""init FloatStatus"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return [1]
def infer_dtype(self, x_dtype):
return x_dtype
class NPUAllocFloatStatus(PrimitiveWithInfer):
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册