提交 b94949ea 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1477 support vm for SpaceToBatchND and BatchToSpaceND

Merge pull request !1477 from jiangjinsheng/BatchToSpaceND
......@@ -82,6 +82,8 @@ static std::map<string, string> tbe_func_adapter_map = {
{"argmax", "arg_max_d"},
{"space_to_batch", "space_to_batch_d"},
{"batch_to_space", "batch_to_space_d"},
{"space_to_batch_nd", "space_to_batch_nd_d"},
{"batch_to_space_nd", "batch_to_space_nd_d"},
{"resize_bilinear", "resize_bilinear_v2_d"},
{"resize_bilinear_grad", "resize_bilinear_v2_grad"},
{"adam", "apply_adam"},
......
......@@ -536,3 +536,23 @@ def get_bprop_batch_to_space(self):
dx = batch_to_space_grad(dout)
return (dx,)
return bprop
@bprop_getters.register(P.SpaceToBatchND)
def get_bprop_space_to_batch_nd(self):
"""Generate bprop for SpaceToBatchND"""
space_to_batch_nd_grad = P.BatchToSpaceND(self.block_shape, self.paddings)
def bprop(x, out, dout):
dx = space_to_batch_nd_grad(dout)
return (dx,)
return bprop
@bprop_getters.register(P.BatchToSpaceND)
def get_bprop_batch_to_space_nd(self):
"""Generate bprop for BatchToSpaceND"""
batch_to_space_nd_grad = P.SpaceToBatchND(self.block_shape, self.crops)
def bprop(x, out, dout):
dx = batch_to_space_nd_grad(dout)
return (dx,)
return bprop
......@@ -200,3 +200,5 @@ from .reduce_prod import _reduce_prod_tbe
from .flatten_grad import _flatten_grad_tbe
from .scatter_add import _scatter_add_tbe
from .atan2 import _atan2_tbe
from .batch_to_space_nd import _batch_to_space_nd_tbe
from .space_to_batch_nd import _space_to_batch_nd_tbe
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""BatchToSpaceND op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
batch_to_space_nd_op_info = TBERegOp("BatchToSpaceND") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("batch_to_space_nd_d.so") \
.compute_cost(10) \
.kernel_name("batch_to_space_nd_d") \
.partial_flag(True) \
.attr("block_shape", "required", "listInt", "all") \
.attr("crops", "required", "listListInt", "all") \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.get_op_info()
@op_info_register(batch_to_space_nd_op_info)
def _batch_to_space_nd_tbe():
"""BatchToSpaceND TBE register"""
return
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SpaceToBatchND op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
space_to_batch_nd_op_info = TBERegOp("SpaceToBatchND") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("space_to_batch_nd_d.so") \
.compute_cost(10) \
.kernel_name("space_to_batch_nd_d") \
.partial_flag(True) \
.attr("block_shape", "required", "listInt", "all") \
.attr("paddings", "required", "listListInt", "all") \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.get_op_info()
@op_info_register(space_to_batch_nd_op_info)
def _space_to_batch_nd_tbe():
"""SpaceToBatchND TBE register"""
return
......@@ -29,7 +29,8 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
Shape, Size, Slice, Split,
Squeeze, StridedSlice, Tile,
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin,
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace)
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace,
SpaceToBatchND, BatchToSpaceND)
from .comm_ops import (AllGather, AllReduce, _AlltoAll, ReduceScatter, Broadcast,
_MirrorOperator, ReduceOp, _VirtualDataset,
_VirtualDiv, _GetTensorSlice)
......@@ -260,6 +261,8 @@ __all__ = [
"Atan2",
"ApplyRMSProp",
"ApplyCenteredRMSProp",
"SpaceToBatchND",
"BatchToSpaceND",
"SquareSumAll"
]
......
......@@ -980,7 +980,7 @@ class InvertPermutation(PrimitiveWithInfer):
validator.check_value_type("shape", x_shp, [tuple, list], self.name)
if mstype.issubclass_(x['dtype'], mstype.tensor):
validator.check('x dimension', len(x_shp), '', 1, Rel.EQ, self.name)
validator.check_type_same({'x dtype': x['dtype']}, mstype.int_type, self.name)
validator.check_tensor_type_same({'x dtype': x['dtype']}, mstype.int_type, self.name)
x_value = [int(i) for i in x_value.asnumpy()]
z = [x_value[i] for i in range(len(x_value))]
z.sort()
......@@ -2491,3 +2491,163 @@ class BatchToSpace(PrimitiveWithInfer):
f'block_size_prod {block_size_prod}')
out_shape[0] = out_shape[0] // block_size_prod
return out_shape
class SpaceToBatchND(PrimitiveWithInfer):
r"""
Divide spatial dimensions into blocks and combine the block size with the original batch.
This operation will divide spatial dimensions (H, W) into blocks with block_shape, the output tensor's H and W
dimension is the corresponding number of blocks after division. The output tensor's batch dimension is the
product of the original batch and the product of block_shape. Prior to division into blocks, the spatial dimensions
of the input are zero padded according to paddings if necessary.
Args:
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
The length of block_shape is M correspoding to the number of spatial dimensions.
paddings (list): The padding value for H and W dimension, containing M sub list, each containing 2 int value.
All values must be >= 0. paddings[i] specifies the paddings for spatial dimension i, which corresponds to
input dimension i+2. It is required that input_shape[i+2]+paddings[i][0]+paddings[i][1] is divisible
by block_shape[i].
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, the output tensor with the same type as input. Assume input shape is :math:`(n, c, h, w)` with
:math:`block\_shape` and :math:`padddings`. The output tensor shape will be :math:`(n', c', h', w')`, where
:math:`n' = n*(block\_shape[0]*block\_shape[1])`
:math:`c' = c`
:math:`h' = (h+paddings[0][0]+paddings[0][1])//block\_shape[0]`
:math:`w' = (w+paddings[1][0]+paddings[1][1])//block\_shape[1]`
Examples:
>>> block_shape = [2, 2]
>>> paddings = [[0, 0], [0, 0]]
>>> space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
>>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
>>> space_to_batch_nd(input_x)
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
"""
@prim_attr_register
def __init__(self, block_shape, paddings):
"""Init SpaceToBatchND"""
validator.check_value_type('block_shape type', block_shape, [list, tuple], self.name)
validator.check('block_shape shape', len(np.array(block_shape).shape), '', 1, Rel.EQ, self.name)
block_rank = len(block_shape)
for elem in block_shape:
validator.check('block_shape element', elem, '', 1, Rel.GE, self.name)
self.block_shape = block_shape
validator.check('paddings shape', np.array(paddings).shape, '', (block_rank, 2), Rel.EQ, self.name)
for elem in itertools.chain(*paddings):
validator.check_integer('paddings element', elem, 0, Rel.GE, self.name)
validator.check_value_type('paddings element', elem, [int], self.name)
self.paddings = paddings
def infer_dtype(self, x_dtype):
validator.check_tensor_type_same({'input_x': x_dtype}, mstype.number_type, self.name)
return x_dtype
def infer_shape(self, x_shape):
x_rank = len(x_shape)
out_shape = copy.deepcopy(x_shape)
block_shape_prod = 1
for i in range(x_rank - 2):
padded = out_shape[i + 2] + self.paddings[i][0] + \
self.paddings[i][1]
if padded % self.block_shape[i] != 0:
raise ValueError(f'For \'{self.name}\' padded[{i}] {padded} should be divisible by '
f'block_shape[{i}] {self.block_shape[i]}')
out_shape[i + 2] = padded // self.block_shape[i]
block_shape_prod = block_shape_prod * self.block_shape[i]
out_shape[0] *= block_shape_prod
return out_shape
class BatchToSpaceND(PrimitiveWithInfer):
r"""
Divide batch dimension with blocks and interleaves these blocks back into spatial dimensions.
This operation will divide batch dimension N into blocks with block_shape, the output tensor's N dimension
is the corresponding number of blocks after division. The output tensor's H, W dimension is product of original H, W
dimension and block_shape with given amount to crop from dimension, respectively.
Args:
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
The length of block_shape is M correspoding to the number of spatial dimensions.
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value.
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to
input dimension i+2. It is required that input_shape[i+2]*block_size[i] >= crops[i][0]+crops[i][1].
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, the output tensor with the same type as input. Assume input shape is (n, c, h, w) with block_shape
and crops. The output shape will be (n', c', h', w'), where
:math:`n' = n//(block\_shape[0]*block\_shape[1])`
:math:`c' = c`
:math:`h' = h*block\_shape[0]-crops[0][0]-crops[0][1]`
:math:`w' = w*block\_shape[1]-crops[1][0]-crops[1][1]`
Examples:
>>> block_shape = [2, 2]
>>> crops = [[0, 0], [0, 0]]
>>> batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
>>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
>>> output = batch_to_space_nd(input_x)
[[[[1., 2.], [3., 4.]]]]
"""
@prim_attr_register
def __init__(self, block_shape, crops):
"""Init BatchToSpaceND"""
validator.check_value_type('block_shape type', block_shape, [list, tuple], self.name)
validator.check('block_shape shape', len(np.array(block_shape).shape), '', 1, Rel.EQ, self.name)
block_rank = len(block_shape)
for elem in block_shape:
validator.check('block_shape element', elem, '', 1, Rel.GE, self.name)
self.block_shape = block_shape
validator.check('crops shape', np.array(crops).shape, '', (block_rank, 2), Rel.EQ, self.name)
for elem in itertools.chain(*crops):
validator.check_integer('crops element', elem, 0, Rel.GE, self.name)
validator.check_value_type('crops element', elem, [int], self.name)
self.crops = crops
def infer_dtype(self, x_dtype):
validator.check_tensor_type_same({'input_x': x_dtype}, mstype.number_type, self.name)
return x_dtype
def infer_shape(self, x_shape):
x_rank = len(x_shape)
out_shape = copy.deepcopy(x_shape)
block_shape_prod = 1
for i in range(x_rank - 2):
block_shape_prod = block_shape_prod * self.block_shape[i]
x_block_prod = out_shape[i + 2] * self.block_shape[i]
crops_sum = self.crops[i][0] + self.crops[i][1]
validator.check("x block shape prod", x_block_prod, 'crops sum', crops_sum, Rel.GT, self.name)
out_shape[i + 2] = x_block_prod - crops_sum
if out_shape[0] % block_shape_prod != 0:
raise ValueError(f'For \'{self.name}\' input_x dimension 0 {out_shape[0]} should be divisible by '
f'block_shape_prod {block_shape_prod}')
out_shape[0] = out_shape[0] // block_shape_prod
return out_shape
......@@ -264,6 +264,27 @@ class DepthToSpaceNet(Cell):
return self.depth_to_space(x)
class BatchToSpaceNDNet(Cell):
def __init__(self):
super(BatchToSpaceNDNet, self).__init__()
block_shape = [2, 2]
crops = [[0, 0], [0, 0]]
self.batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
def construct(self, x):
return self.batch_to_space_nd(x)
class SpaceToBatchNDNet(Cell):
def __init__(self):
super(SpaceToBatchNDNet, self).__init__()
block_shape = [2, 2]
paddings = [[0, 0], [0, 0]]
self.space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
def construct(self, x):
return self.space_to_batch_nd(x)
test_case_array_ops = [
('CustNet1', {
'block': CustNet1(),
......@@ -298,6 +319,12 @@ test_case_array_ops = [
('DepthToSpaceNet', {
'block': DepthToSpaceNet(),
'desc_inputs': [Tensor(np.random.rand(1,12,1,1).astype(np.float16))]}),
('SpaceToBatchNDNet', {
'block': SpaceToBatchNDNet(),
'desc_inputs': [Tensor(np.random.rand(1,1,2,2).astype(np.float16))]}),
('BatchToSpaceNDNet', {
'block': BatchToSpaceNDNet(),
'desc_inputs': [Tensor(np.random.rand(4,1,1,1).astype(np.float16))]}),
]
test_case_lists = [test_case_array_ops]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册