Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
b94949ea
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b94949ea
编写于
5月 27, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 27, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1477 support vm for SpaceToBatchND and BatchToSpaceND
Merge pull request !1477 from jiangjinsheng/BatchToSpaceND
上级
5e2f440e
4ff95eab
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
292 addition
and
2 deletion
+292
-2
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
+2
-0
mindspore/ops/_grad/grad_array_ops.py
mindspore/ops/_grad/grad_array_ops.py
+20
-0
mindspore/ops/_op_impl/tbe/__init__.py
mindspore/ops/_op_impl/tbe/__init__.py
+2
-0
mindspore/ops/_op_impl/tbe/batch_to_space_nd.py
mindspore/ops/_op_impl/tbe/batch_to_space_nd.py
+38
-0
mindspore/ops/_op_impl/tbe/space_to_batch_nd.py
mindspore/ops/_op_impl/tbe/space_to_batch_nd.py
+38
-0
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+4
-1
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+161
-1
tests/ut/python/ops/test_array_ops.py
tests/ut/python/ops/test_array_ops.py
+27
-0
未找到文件。
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
浏览文件 @
b94949ea
...
...
@@ -82,6 +82,8 @@ static std::map<string, string> tbe_func_adapter_map = {
{
"argmax"
,
"arg_max_d"
},
{
"space_to_batch"
,
"space_to_batch_d"
},
{
"batch_to_space"
,
"batch_to_space_d"
},
{
"space_to_batch_nd"
,
"space_to_batch_nd_d"
},
{
"batch_to_space_nd"
,
"batch_to_space_nd_d"
},
{
"resize_bilinear"
,
"resize_bilinear_v2_d"
},
{
"resize_bilinear_grad"
,
"resize_bilinear_v2_grad"
},
{
"adam"
,
"apply_adam"
},
...
...
mindspore/ops/_grad/grad_array_ops.py
浏览文件 @
b94949ea
...
...
@@ -536,3 +536,23 @@ def get_bprop_batch_to_space(self):
dx
=
batch_to_space_grad
(
dout
)
return
(
dx
,)
return
bprop
@
bprop_getters
.
register
(
P
.
SpaceToBatchND
)
def
get_bprop_space_to_batch_nd
(
self
):
"""Generate bprop for SpaceToBatchND"""
space_to_batch_nd_grad
=
P
.
BatchToSpaceND
(
self
.
block_shape
,
self
.
paddings
)
def
bprop
(
x
,
out
,
dout
):
dx
=
space_to_batch_nd_grad
(
dout
)
return
(
dx
,)
return
bprop
@
bprop_getters
.
register
(
P
.
BatchToSpaceND
)
def
get_bprop_batch_to_space_nd
(
self
):
"""Generate bprop for BatchToSpaceND"""
batch_to_space_nd_grad
=
P
.
SpaceToBatchND
(
self
.
block_shape
,
self
.
crops
)
def
bprop
(
x
,
out
,
dout
):
dx
=
batch_to_space_nd_grad
(
dout
)
return
(
dx
,)
return
bprop
mindspore/ops/_op_impl/tbe/__init__.py
浏览文件 @
b94949ea
...
...
@@ -200,3 +200,5 @@ from .reduce_prod import _reduce_prod_tbe
from
.flatten_grad
import
_flatten_grad_tbe
from
.scatter_add
import
_scatter_add_tbe
from
.atan2
import
_atan2_tbe
from
.batch_to_space_nd
import
_batch_to_space_nd_tbe
from
.space_to_batch_nd
import
_space_to_batch_nd_tbe
mindspore/ops/_op_impl/tbe/batch_to_space_nd.py
0 → 100644
浏览文件 @
b94949ea
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""BatchToSpaceND op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
batch_to_space_nd_op_info
=
TBERegOp
(
"BatchToSpaceND"
)
\
.
fusion_type
(
"OPAQUE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"batch_to_space_nd_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"batch_to_space_nd_d"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"block_shape"
,
"required"
,
"listInt"
,
"all"
)
\
.
attr
(
"crops"
,
"required"
,
"listListInt"
,
"all"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
get_op_info
()
@
op_info_register
(
batch_to_space_nd_op_info
)
def
_batch_to_space_nd_tbe
():
"""BatchToSpaceND TBE register"""
return
mindspore/ops/_op_impl/tbe/space_to_batch_nd.py
0 → 100644
浏览文件 @
b94949ea
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SpaceToBatchND op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
space_to_batch_nd_op_info
=
TBERegOp
(
"SpaceToBatchND"
)
\
.
fusion_type
(
"OPAQUE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"space_to_batch_nd_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"space_to_batch_nd_d"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"block_shape"
,
"required"
,
"listInt"
,
"all"
)
\
.
attr
(
"paddings"
,
"required"
,
"listListInt"
,
"all"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
get_op_info
()
@
op_info_register
(
space_to_batch_nd_op_info
)
def
_space_to_batch_nd_tbe
():
"""SpaceToBatchND TBE register"""
return
mindspore/ops/operations/__init__.py
浏览文件 @
b94949ea
...
...
@@ -29,7 +29,8 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
Shape
,
Size
,
Slice
,
Split
,
Squeeze
,
StridedSlice
,
Tile
,
Transpose
,
TruncatedNormal
,
TupleToArray
,
UnsortedSegmentMin
,
UnsortedSegmentSum
,
SpaceToDepth
,
DepthToSpace
,
SpaceToBatch
,
BatchToSpace
)
UnsortedSegmentSum
,
SpaceToDepth
,
DepthToSpace
,
SpaceToBatch
,
BatchToSpace
,
SpaceToBatchND
,
BatchToSpaceND
)
from
.comm_ops
import
(
AllGather
,
AllReduce
,
_AlltoAll
,
ReduceScatter
,
Broadcast
,
_MirrorOperator
,
ReduceOp
,
_VirtualDataset
,
_VirtualDiv
,
_GetTensorSlice
)
...
...
@@ -260,6 +261,8 @@ __all__ = [
"Atan2"
,
"ApplyRMSProp"
,
"ApplyCenteredRMSProp"
,
"SpaceToBatchND"
,
"BatchToSpaceND"
,
"SquareSumAll"
]
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
b94949ea
...
...
@@ -980,7 +980,7 @@ class InvertPermutation(PrimitiveWithInfer):
validator
.
check_value_type
(
"shape"
,
x_shp
,
[
tuple
,
list
],
self
.
name
)
if
mstype
.
issubclass_
(
x
[
'dtype'
],
mstype
.
tensor
):
validator
.
check
(
'x dimension'
,
len
(
x_shp
),
''
,
1
,
Rel
.
EQ
,
self
.
name
)
validator
.
check_type_same
({
'x dtype'
:
x
[
'dtype'
]},
mstype
.
int_type
,
self
.
name
)
validator
.
check_t
ensor_t
ype_same
({
'x dtype'
:
x
[
'dtype'
]},
mstype
.
int_type
,
self
.
name
)
x_value
=
[
int
(
i
)
for
i
in
x_value
.
asnumpy
()]
z
=
[
x_value
[
i
]
for
i
in
range
(
len
(
x_value
))]
z
.
sort
()
...
...
@@ -2491,3 +2491,163 @@ class BatchToSpace(PrimitiveWithInfer):
f
'block_size_prod
{
block_size_prod
}
'
)
out_shape
[
0
]
=
out_shape
[
0
]
//
block_size_prod
return
out_shape
class
SpaceToBatchND
(
PrimitiveWithInfer
):
r
"""
Divide spatial dimensions into blocks and combine the block size with the original batch.
This operation will divide spatial dimensions (H, W) into blocks with block_shape, the output tensor's H and W
dimension is the corresponding number of blocks after division. The output tensor's batch dimension is the
product of the original batch and the product of block_shape. Prior to division into blocks, the spatial dimensions
of the input are zero padded according to paddings if necessary.
Args:
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
The length of block_shape is M correspoding to the number of spatial dimensions.
paddings (list): The padding value for H and W dimension, containing M sub list, each containing 2 int value.
All values must be >= 0. paddings[i] specifies the paddings for spatial dimension i, which corresponds to
input dimension i+2. It is required that input_shape[i+2]+paddings[i][0]+paddings[i][1] is divisible
by block_shape[i].
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, the output tensor with the same type as input. Assume input shape is :math:`(n, c, h, w)` with
:math:`block\_shape` and :math:`padddings`. The output tensor shape will be :math:`(n', c', h', w')`, where
:math:`n' = n*(block\_shape[0]*block\_shape[1])`
:math:`c' = c`
:math:`h' = (h+paddings[0][0]+paddings[0][1])//block\_shape[0]`
:math:`w' = (w+paddings[1][0]+paddings[1][1])//block\_shape[1]`
Examples:
>>> block_shape = [2, 2]
>>> paddings = [[0, 0], [0, 0]]
>>> space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
>>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
>>> space_to_batch_nd(input_x)
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
"""
@
prim_attr_register
def
__init__
(
self
,
block_shape
,
paddings
):
"""Init SpaceToBatchND"""
validator
.
check_value_type
(
'block_shape type'
,
block_shape
,
[
list
,
tuple
],
self
.
name
)
validator
.
check
(
'block_shape shape'
,
len
(
np
.
array
(
block_shape
).
shape
),
''
,
1
,
Rel
.
EQ
,
self
.
name
)
block_rank
=
len
(
block_shape
)
for
elem
in
block_shape
:
validator
.
check
(
'block_shape element'
,
elem
,
''
,
1
,
Rel
.
GE
,
self
.
name
)
self
.
block_shape
=
block_shape
validator
.
check
(
'paddings shape'
,
np
.
array
(
paddings
).
shape
,
''
,
(
block_rank
,
2
),
Rel
.
EQ
,
self
.
name
)
for
elem
in
itertools
.
chain
(
*
paddings
):
validator
.
check_integer
(
'paddings element'
,
elem
,
0
,
Rel
.
GE
,
self
.
name
)
validator
.
check_value_type
(
'paddings element'
,
elem
,
[
int
],
self
.
name
)
self
.
paddings
=
paddings
def
infer_dtype
(
self
,
x_dtype
):
validator
.
check_tensor_type_same
({
'input_x'
:
x_dtype
},
mstype
.
number_type
,
self
.
name
)
return
x_dtype
def
infer_shape
(
self
,
x_shape
):
x_rank
=
len
(
x_shape
)
out_shape
=
copy
.
deepcopy
(
x_shape
)
block_shape_prod
=
1
for
i
in
range
(
x_rank
-
2
):
padded
=
out_shape
[
i
+
2
]
+
self
.
paddings
[
i
][
0
]
+
\
self
.
paddings
[
i
][
1
]
if
padded
%
self
.
block_shape
[
i
]
!=
0
:
raise
ValueError
(
f
'For
\'
{
self
.
name
}
\'
padded[
{
i
}
]
{
padded
}
should be divisible by '
f
'block_shape[
{
i
}
]
{
self
.
block_shape
[
i
]
}
'
)
out_shape
[
i
+
2
]
=
padded
//
self
.
block_shape
[
i
]
block_shape_prod
=
block_shape_prod
*
self
.
block_shape
[
i
]
out_shape
[
0
]
*=
block_shape_prod
return
out_shape
class
BatchToSpaceND
(
PrimitiveWithInfer
):
r
"""
Divide batch dimension with blocks and interleaves these blocks back into spatial dimensions.
This operation will divide batch dimension N into blocks with block_shape, the output tensor's N dimension
is the corresponding number of blocks after division. The output tensor's H, W dimension is product of original H, W
dimension and block_shape with given amount to crop from dimension, respectively.
Args:
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
The length of block_shape is M correspoding to the number of spatial dimensions.
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value.
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to
input dimension i+2. It is required that input_shape[i+2]*block_size[i] >= crops[i][0]+crops[i][1].
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, the output tensor with the same type as input. Assume input shape is (n, c, h, w) with block_shape
and crops. The output shape will be (n', c', h', w'), where
:math:`n' = n//(block\_shape[0]*block\_shape[1])`
:math:`c' = c`
:math:`h' = h*block\_shape[0]-crops[0][0]-crops[0][1]`
:math:`w' = w*block\_shape[1]-crops[1][0]-crops[1][1]`
Examples:
>>> block_shape = [2, 2]
>>> crops = [[0, 0], [0, 0]]
>>> batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
>>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
>>> output = batch_to_space_nd(input_x)
[[[[1., 2.], [3., 4.]]]]
"""
@
prim_attr_register
def
__init__
(
self
,
block_shape
,
crops
):
"""Init BatchToSpaceND"""
validator
.
check_value_type
(
'block_shape type'
,
block_shape
,
[
list
,
tuple
],
self
.
name
)
validator
.
check
(
'block_shape shape'
,
len
(
np
.
array
(
block_shape
).
shape
),
''
,
1
,
Rel
.
EQ
,
self
.
name
)
block_rank
=
len
(
block_shape
)
for
elem
in
block_shape
:
validator
.
check
(
'block_shape element'
,
elem
,
''
,
1
,
Rel
.
GE
,
self
.
name
)
self
.
block_shape
=
block_shape
validator
.
check
(
'crops shape'
,
np
.
array
(
crops
).
shape
,
''
,
(
block_rank
,
2
),
Rel
.
EQ
,
self
.
name
)
for
elem
in
itertools
.
chain
(
*
crops
):
validator
.
check_integer
(
'crops element'
,
elem
,
0
,
Rel
.
GE
,
self
.
name
)
validator
.
check_value_type
(
'crops element'
,
elem
,
[
int
],
self
.
name
)
self
.
crops
=
crops
def
infer_dtype
(
self
,
x_dtype
):
validator
.
check_tensor_type_same
({
'input_x'
:
x_dtype
},
mstype
.
number_type
,
self
.
name
)
return
x_dtype
def
infer_shape
(
self
,
x_shape
):
x_rank
=
len
(
x_shape
)
out_shape
=
copy
.
deepcopy
(
x_shape
)
block_shape_prod
=
1
for
i
in
range
(
x_rank
-
2
):
block_shape_prod
=
block_shape_prod
*
self
.
block_shape
[
i
]
x_block_prod
=
out_shape
[
i
+
2
]
*
self
.
block_shape
[
i
]
crops_sum
=
self
.
crops
[
i
][
0
]
+
self
.
crops
[
i
][
1
]
validator
.
check
(
"x block shape prod"
,
x_block_prod
,
'crops sum'
,
crops_sum
,
Rel
.
GT
,
self
.
name
)
out_shape
[
i
+
2
]
=
x_block_prod
-
crops_sum
if
out_shape
[
0
]
%
block_shape_prod
!=
0
:
raise
ValueError
(
f
'For
\'
{
self
.
name
}
\'
input_x dimension 0
{
out_shape
[
0
]
}
should be divisible by '
f
'block_shape_prod
{
block_shape_prod
}
'
)
out_shape
[
0
]
=
out_shape
[
0
]
//
block_shape_prod
return
out_shape
tests/ut/python/ops/test_array_ops.py
浏览文件 @
b94949ea
...
...
@@ -264,6 +264,27 @@ class DepthToSpaceNet(Cell):
return
self
.
depth_to_space
(
x
)
class
BatchToSpaceNDNet
(
Cell
):
def
__init__
(
self
):
super
(
BatchToSpaceNDNet
,
self
).
__init__
()
block_shape
=
[
2
,
2
]
crops
=
[[
0
,
0
],
[
0
,
0
]]
self
.
batch_to_space_nd
=
P
.
BatchToSpaceND
(
block_shape
,
crops
)
def
construct
(
self
,
x
):
return
self
.
batch_to_space_nd
(
x
)
class
SpaceToBatchNDNet
(
Cell
):
def
__init__
(
self
):
super
(
SpaceToBatchNDNet
,
self
).
__init__
()
block_shape
=
[
2
,
2
]
paddings
=
[[
0
,
0
],
[
0
,
0
]]
self
.
space_to_batch_nd
=
P
.
SpaceToBatchND
(
block_shape
,
paddings
)
def
construct
(
self
,
x
):
return
self
.
space_to_batch_nd
(
x
)
test_case_array_ops
=
[
(
'CustNet1'
,
{
'block'
:
CustNet1
(),
...
...
@@ -298,6 +319,12 @@ test_case_array_ops = [
(
'DepthToSpaceNet'
,
{
'block'
:
DepthToSpaceNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
12
,
1
,
1
).
astype
(
np
.
float16
))]}),
(
'SpaceToBatchNDNet'
,
{
'block'
:
SpaceToBatchNDNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
1
,
1
,
2
,
2
).
astype
(
np
.
float16
))]}),
(
'BatchToSpaceNDNet'
,
{
'block'
:
BatchToSpaceNDNet
(),
'desc_inputs'
:
[
Tensor
(
np
.
random
.
rand
(
4
,
1
,
1
,
1
).
astype
(
np
.
float16
))]}),
]
test_case_lists
=
[
test_case_array_ops
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录