提交 b73ea6a7 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!3668 Modify collecting graph and dataset graph to step end stage

Merge pull request !3668 from ougongchang/fix_collect_dataset
......@@ -182,7 +182,7 @@ class SummaryCollector(Callback):
self._custom_lineage_data = custom_lineage_data
self._temp_optimizer = None
self._has_saved_train_network = False
self._has_saved_graph = False
self._has_saved_custom_data = False
self._is_parse_loss_success = True
self._first_step = True
......@@ -287,32 +287,30 @@ class SummaryCollector(Callback):
'but got `{cb_params.mode}` mode.')
self._record.set_mode(cb_params.mode)
if cb_params.mode == ModeEnum.TRAIN.value:
# Note: if model.init is not executed then the computed graph will not be obtained here
# The purpose of recording the graph here was to collect_freq if it was set to a large size,
# but also want to see the graph as soon after compilation.
self._collect_graphs(cb_params)
self._collect_dataset_graph(cb_params)
if cb_params.mode == ModeEnum.TRAIN.value:
if self._collect_tensor_freq is None:
default_tensor_summary_limit = 20
total_step = cb_params.epoch_num * cb_params.batch_num
self._collect_tensor_freq = max(self._collect_freq, total_step // default_tensor_summary_limit)
if self._custom_lineage_data and not self._has_saved_custom_data:
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data)
self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data)
self._has_saved_custom_data = True
# There's nothing special about setting step to 0 here, just to satisfy the interface call
self._record.record(step=0)
def step_end(self, run_context):
cb_params = run_context.original_args()
if cb_params.mode != ModeEnum.TRAIN.value:
return
if not self._has_saved_train_network:
if not self._has_saved_graph:
self._collect_graphs(cb_params)
self._collect_dataset_graph(cb_params)
self._has_saved_graph = True
self._record.record(cb_params.cur_step_num)
if self._custom_lineage_data and not self._has_saved_custom_data:
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data)
self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data)
self._has_saved_custom_data = True
self._record.record(cb_params.cur_step_num)
if self._first_step:
# Notice: This way of determining whether dataset sink mode is True does not work in the eval scenario
self._dataset_sink_mode = cb_params.cur_step_num == cb_params.batch_num
......@@ -327,14 +325,12 @@ class SummaryCollector(Callback):
elif current % self._collect_freq == 0:
self._collect_at_step_end(cb_params, lambda plugin: plugin != PluginEnum.TENSOR.value)
def _collect_at_step_end(self, cb_params, plugin_filter):
self._collect_input_data(cb_params)
self._collect_metric(cb_params)
self._collect_histogram(cb_params)
self._record.record(cb_params.cur_step_num, plugin_filter=plugin_filter)
def end(self, run_context):
cb_params = run_context.original_args()
if cb_params.mode == ModeEnum.TRAIN.value:
......@@ -428,7 +424,6 @@ class SummaryCollector(Callback):
if graph_proto is None:
return
self._has_saved_train_network = True
self._record.add_value(PluginEnum.GRAPH.value, 'train_network/auto', graph_proto)
def _collect_metric(self, cb_params):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册