提交 b4c0ed4b 编写于 作者: H huanghui

add signle batchnorm fission pass

上级 fcdc88cc
......@@ -21,6 +21,7 @@
#include "pre_activate/ascend/ir_fission/bn_grad_split.h"
#include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h"
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include "pre_activate/ascend/ir_fission/single_batch_norm_fission.h"
#include "pre_activate/ascend/ir_fusion/fused_batch_norm_fusion.h"
#include "pre_activate/ascend/ir_fission/layer_norm_grad_split.h"
#include "pre_activate/pass/communication_op_fusion.h"
......@@ -240,6 +241,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm->AddPass(std::make_shared<FusedBatchNormFusion>());
ir_fusion_pm->AddPass(std::make_shared<FusedBatchNormMixPrecisionFusion0>());
ir_fusion_pm->AddPass(std::make_shared<FusedBatchNormMixPrecisionFusion1>());
ir_fusion_pm->AddPass(std::make_shared<SingleBatchNormFission>());
}
ir_fusion_pm->AddPass(std::make_shared<AddMemcpyAsync>());
ir_fusion_pm->AddPass(std::make_shared<InsertPadForNMSWithMask>());
......
......@@ -27,24 +27,6 @@ const std::vector<int> kOutputIndex{0, 3, 4, 5};
constexpr size_t kBatchNormRealOutputNum = 3;
constexpr size_t kBatchNormRealInputNum = 3;
bool CompareTupleGetitem(const AnfNodePtr &n1, const AnfNodePtr &n2) {
MS_EXCEPTION_IF_NULL(n1);
MS_EXCEPTION_IF_NULL(n2);
auto n1_cnode = n1->cast<CNodePtr>();
auto n2_cnode = n2->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(n1_cnode);
MS_EXCEPTION_IF_NULL(n2_cnode);
auto index_input1 = n1_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_input1);
auto value_node1 = index_input1->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node1);
auto index_input2 = n2_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_input2);
auto value_node2 = index_input2->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node2);
return GetValue<int>(value_node1->value()) < GetValue<int>(value_node2->value());
}
bool GetBatchNormOutputs(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, std::vector<AnfNodePtr> *bn_outputs) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn_outputs);
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/single_batch_norm_fission.h"
#include <vector>
#include <memory>
#include <algorithm>
#include "session/anf_runtime_algorithm.h"
#include "pre_activate/common/helper.h"
namespace mindspore {
namespace opt {
namespace {
const std::vector<int> kOutputIndex{0, 1, 2, 3, 4};
constexpr size_t kBatchNormRealOutputNum = 5;
constexpr size_t kBatchNormRealInputNum = 3;
bool GetBatchNormOutputs(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, std::vector<AnfNodePtr> *bn_outputs) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn_outputs);
auto manager = func_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
auto iter = manager->node_users().find(bn);
if (iter == manager->node_users().end()) {
return false;
}
size_t output_num = 0;
for (const auto &node_index : iter->second) {
AnfNodePtr output = node_index.first;
MS_EXCEPTION_IF_NULL(output);
if (!IsPrimitiveCNode(output, prim::kPrimTupleGetItem)) {
continue;
}
auto tuple_getiterm_cnode = output->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(tuple_getiterm_cnode);
auto index_node = tuple_getiterm_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_node);
auto value_node = index_node->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node);
int index = GetValue<int>(value_node->value());
if (std::find(kOutputIndex.begin(), kOutputIndex.end(), index) == kOutputIndex.end()) {
return false;
}
bn_outputs->push_back(output);
output_num++;
}
return output_num == kBatchNormRealOutputNum;
}
AnfNodePtr CreateBNTrainingReduce(const FuncGraphPtr &func_graph, const AnfNodePtr &bn) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn);
auto bn_cnode = bn->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(bn_cnode);
if (bn_cnode->inputs().size() < kBatchNormRealInputNum + 1) {
MS_LOG(EXCEPTION) << "The input size of node " + bn_cnode->DebugString() + " is less than "
<< kBatchNormRealInputNum + 1;
}
std::vector<AnfNodePtr> bn_training_reduce_inputs = {
NewValueNode(std::make_shared<Primitive>(kBNTrainingReduceOpName)), bn_cnode->input(1)};
auto bn_training_reduce = func_graph->NewCNode(bn_training_reduce_inputs);
MS_EXCEPTION_IF_NULL(bn_training_reduce);
// set abstract
auto bn_input1 = bn_cnode->input(2);
MS_EXCEPTION_IF_NULL(bn_input1);
AbstractBasePtrList abstract_list{bn_input1->abstract(), bn_input1->abstract()};
auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list);
bn_training_reduce->set_abstract(abstract_tuple);
bn_training_reduce->set_scope(bn->scope());
return bn_training_reduce;
}
AnfNodePtr CreateBNTrainingUpdateV3(const FuncGraphPtr &func_graph, const AnfNodePtr &bn,
const std::vector<AnfNodePtr> &bn_training_reduce_outputs) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn);
auto bn_cnode = bn->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(bn_cnode);
if (bn_cnode->inputs().size() < kBatchNormRealInputNum + 1) {
MS_LOG(EXCEPTION) << "The input size of node " + bn_cnode->DebugString() + " is less than "
<< kBatchNormRealInputNum + 1;
}
if (bn_training_reduce_outputs.size() != kBNTrainingReduceOutputNum) {
MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingReduceOutputNum
<< ", but it is " << bn_training_reduce_outputs.size();
}
std::vector<AnfNodePtr> bn_training_update_v3_inputs = {
NewValueNode(std::make_shared<Primitive>(kBNTrainingUpdateV3OpName)),
bn_cnode->input(1),
bn_training_reduce_outputs[0],
bn_training_reduce_outputs[1],
bn_cnode->input(2),
bn_cnode->input(3)};
auto bn_training_update_v3 = func_graph->NewCNode(bn_training_update_v3_inputs);
MS_EXCEPTION_IF_NULL(bn_training_update_v3);
auto bn_abstract_tuple = dyn_cast<abstract::AbstractTuple>(bn->abstract());
MS_EXCEPTION_IF_NULL(bn_abstract_tuple);
if (bn_abstract_tuple->elements().size() != kBatchNormOutputNum) {
MS_LOG(EXCEPTION) << "The abstract size of node bn must be " << kBatchNormOutputNum << ", but it is "
<< bn_abstract_tuple->elements().size();
}
bn_training_update_v3->set_abstract(bn->abstract());
bn_training_update_v3->set_scope(bn->scope());
AnfAlgo::CopyNodeAttr(kAttrEpsilon, bn_cnode, bn_training_update_v3);
return bn_training_update_v3;
}
} // namespace
const BaseRef SingleBatchNormFission::DefinePattern() const {
VarPtr Xs = std::make_shared<SeqVar>();
return VectorRef({prim::kPrimBatchNorm, Xs});
}
const AnfNodePtr SingleBatchNormFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(node);
std::vector<AnfNodePtr> bn_outputs;
if (!GetBatchNormOutputs(func_graph, node, &bn_outputs)) {
MS_LOG(INFO) << "The BatchNorm node should only have output 0, 3 and 4. The node should not be changed";
return nullptr;
}
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
if (cnode->inputs().size() < kBatchNormRealInputNum + 1) {
MS_LOG(INFO) << "The input num of BatchNorm less than" << kBatchNormRealInputNum
<< ". The node should not be changed";
return nullptr;
}
AnfNodePtr bn_training_reduce = CreateBNTrainingReduce(func_graph, node);
std::vector<AnfNodePtr> bn_training_reduce_outputs;
CreateMultipleOutputsOfAnfNode(func_graph, bn_training_reduce, kBNTrainingReduceOutputNum,
&bn_training_reduce_outputs);
AnfNodePtr bn_training_update_v3 = CreateBNTrainingUpdateV3(func_graph, node, bn_training_reduce_outputs);
std::vector<AnfNodePtr> bn_training_update_v3_outputs;
CreateMultipleOutputsOfAnfNode(func_graph, bn_training_update_v3, kBNTrainingUpdateV3OutputNum,
&bn_training_update_v3_outputs);
if (bn_training_update_v3_outputs.size() != kBNTrainingUpdateV3OutputNum) {
MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingUpdateV2OutputNum
<< ", but it is " << bn_training_update_v3_outputs.size();
}
auto manager = func_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
sort(bn_outputs.begin(), bn_outputs.end(), CompareTupleGetitem);
size_t output_index = 0;
for (const auto &output : bn_outputs) {
(void)manager->Replace(output, bn_training_update_v3_outputs[output_index]);
output_index++;
}
// Return the new node for control depends.
return bn_training_update_v3;
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_SINGLE_BATCH_NORM_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_SINGLE_BATCH_NORM_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace mindspore {
namespace opt {
class SingleBatchNormFission : public PatternProcessPass {
public:
explicit SingleBatchNormFission(bool multigraph = true)
: PatternProcessPass("single_batch_norm_fission", multigraph) {}
~SingleBatchNormFission() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_SINGLE_BATCH_NORM_FISSION_H_
......@@ -704,5 +704,23 @@ AnfNodePtr GetAnfNodeByVar(const EquivPtr &equiv, const VarPtr &var_node) {
}
return res;
}
bool CompareTupleGetitem(const AnfNodePtr &n1, const AnfNodePtr &n2) {
MS_EXCEPTION_IF_NULL(n1);
MS_EXCEPTION_IF_NULL(n2);
auto n1_cnode = n1->cast<CNodePtr>();
auto n2_cnode = n2->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(n1_cnode);
MS_EXCEPTION_IF_NULL(n2_cnode);
auto index_input1 = n1_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_input1);
auto value_node1 = index_input1->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node1);
auto index_input2 = n2_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_input2);
auto value_node2 = index_input2->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node2);
return GetValue<int>(value_node1->value()) < GetValue<int>(value_node2->value());
}
} // namespace opt
} // namespace mindspore
......@@ -65,6 +65,7 @@ constexpr size_t kBNGrad3OutputNum = 1;
constexpr size_t kBNTrainingReduceOutputNum = 2;
constexpr size_t kBNTrainingUpdateOutputNum = 5;
constexpr size_t kBNTrainingUpdateV2OutputNum = 3;
constexpr size_t kBNTrainingUpdateV3OutputNum = 5;
constexpr size_t kBNTrainingUpdateGradOutputNum = 2;
constexpr size_t kSingleOutputNum = 1;
......@@ -176,6 +177,9 @@ bool IsSameNode(const EquivPtr &equiv1, const EquivPtr &equiv2, const VarPtr &va
// Get anf_node from equiv by var_node
AnfNodePtr GetAnfNodeByVar(const EquivPtr &equiv, const VarPtr &var_node);
// Compare tuple getitem's index, return bool[n1's index < n2's index]
bool CompareTupleGetitem(const AnfNodePtr &n1, const AnfNodePtr &n2);
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_COMMON_HELPER_H_
......@@ -55,6 +55,7 @@ constexpr auto kExtractImagePatchesOpName = "ExtractImagePatches";
constexpr auto kBNTrainingReduceOpName = "BNTrainingReduce";
constexpr auto kBNTrainingUpdateOpName = "BNTrainingUpdate";
constexpr auto kBNTrainingUpdateV2OpName = "BNTrainingUpdateV2";
constexpr auto kBNTrainingUpdateV3OpName = "BNTrainingUpdateV3";
constexpr auto kSimpleMeanGradOpName = "SimpleMeanGrad";
constexpr auto kMeanGradOpName = "MeanGrad";
constexpr auto kSliceOpName = "Slice";
......
......@@ -80,6 +80,7 @@ TEST_F(TestHWBatchNormBertFission, test_fused_batch_norm_no_fission) {
args_spec_list.push_back(y_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto origin_graph = std::make_shared<session::KernelGraph>(*kg);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
......@@ -87,7 +88,7 @@ TEST_F(TestHWBatchNormBertFission, test_fused_batch_norm_no_fission) {
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
EXPECT_TRUE(CheckEqualGraph(kg, new_graph));
EXPECT_TRUE(CheckEqualGraph(origin_graph, new_graph));
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/single_batch_norm_fission.h"
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "debug/anf_ir_dump.h"
namespace mindspore {
namespace opt {
class TestHWSingleBatchNormFission : public BackendCommon {
public:
TestHWSingleBatchNormFission() : get_py_fun_("gtest_input.pre_activate.single_batch_norm_fission_test", true) {}
~TestHWSingleBatchNormFission() override = default;
UT::PyFuncGraphFetcher get_py_fun_;
};
TEST_F(TestHWSingleBatchNormFission, test_fission) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_single_batch_norm_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp_x{32, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
std::vector<int> shp_y{64};
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
AbstractBasePtrList args_spec_list{x_abstract};
for (size_t i = 0; i < 4; ++i) {
args_spec_list.push_back(y_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::SingleBatchNormFission>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_single_batch_norm_fission", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
TEST_F(TestHWSingleBatchNormFission, test_no_fission) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_single_batch_norm_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp_x{32, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
std::vector<int> shp_y{64};
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
AbstractBasePtrList args_spec_list{x_abstract};
for (size_t i = 0; i < 4; ++i) {
args_spec_list.push_back(y_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto origin_graph = std::make_shared<session::KernelGraph>(*kg);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::SingleBatchNormFission>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
EXPECT_TRUE(CheckEqualGraph(origin_graph, new_graph));
}
} // namespace opt
} // namespace mindspore
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import Primitive
from mindspore.ops import operations as P
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive('tuple_getitem')
BatchNorm = P.BatchNorm()
BNTrainingReduce = Primitive('BNTrainingReduce')
BNTrainingUpdateV3 = Primitive('BNTrainingUpdateV3')
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_single_batch_norm_fission(tag):
fns = FnDict()
@fns
def before(input0, input1, input2, input3, input4):
batch_norm = BatchNorm(input0, input1, input2, input3, input4)
item0 = tuple_getitem(batch_norm, 0)
item1 = tuple_getitem(batch_norm, 1)
item2 = tuple_getitem(batch_norm, 2)
item3 = tuple_getitem(batch_norm, 3)
item4 = tuple_getitem(batch_norm, 4)
output = make_tuple(item0, item1, item2, item3, item4)
return output
@fns
def after(input0, input1, input2, input3, input4):
reduce = BNTrainingReduce(input0)
reduce_item0 = tuple_getitem(reduce, 0)
reduce_item1 = tuple_getitem(reduce, 1)
update = BNTrainingUpdateV3(input0, reduce_item0, reduce_item1, input1, input2)
update_item0 = tuple_getitem(update, 0)
update_item1 = tuple_getitem(update, 1)
update_item2 = tuple_getitem(update, 2)
update_item3 = tuple_getitem(update, 3)
update_item4 = tuple_getitem(update, 4)
output = make_tuple(update_item0, update_item1, update_item2, update_item3, update_item4)
return make_tuple(output)
return fns[tag]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册