提交 b3fd38c2 编写于 作者: C c00425699 提交者: 高东海

fix bug for allreduce fusion and add resnet unit test

上级 10312620
...@@ -359,7 +359,7 @@ Status AllreduceFusion::SetFusionByBackwardCompAndAllreduceTime() { ...@@ -359,7 +359,7 @@ Status AllreduceFusion::SetFusionByBackwardCompAndAllreduceTime() {
return FAILED; return FAILED;
} }
double para_size = (tail_time_ - allreduce_inherent_time_) / allreduce_bandwidth_; double para_size = (tail_time_ - allreduce_inherent_time_) / allreduce_bandwidth_;
double to_cost = allreduce_graph_.max() + FUSION_COST_EPS; double to_cost = allreduce_graph_.max();
int32_t fusion = 1; int32_t fusion = 1;
while (to_cost != 0) { while (to_cost != 0) {
MS_LOG(INFO) << "to_cost: " << to_cost << " para_size: " << para_size; MS_LOG(INFO) << "to_cost: " << to_cost << " para_size: " << para_size;
......
...@@ -38,7 +38,6 @@ constexpr double DEFAULT_COST_MODEL_ALLREDUCE_FUSION_COMPUTATION_TIME_PARAMETER ...@@ -38,7 +38,6 @@ constexpr double DEFAULT_COST_MODEL_ALLREDUCE_FUSION_COMPUTATION_TIME_PARAMETER
constexpr char FUSION[] = "fusion"; constexpr char FUSION[] = "fusion";
constexpr char PARAMETER[] = "parameter"; constexpr char PARAMETER[] = "parameter";
const uint32_t MAX_RECURSIVE_CALL_TIMES = 100; const uint32_t MAX_RECURSIVE_CALL_TIMES = 100;
const double FUSION_COST_EPS = 1e-7;
class AllreduceFusion { class AllreduceFusion {
public: public:
AllreduceFusion() AllreduceFusion()
......
...@@ -24,7 +24,19 @@ ...@@ -24,7 +24,19 @@
namespace mindspore { namespace mindspore {
namespace parallel { namespace parallel {
Status AllreduceGraph::AddNode(const CNodePtr& node, const AnfNodePtr& para) { Status AllreduceGraph::AddNode(const CNodePtr& node, const AnfNodePtr& para) {
auto arnode = std::make_shared<AllreduceNode>(AllreduceNode()); AllreduceNodePtr arnode;
auto cnode_emplace_return = cnode_set_.emplace(node);
if (!cnode_emplace_return.second) {
MS_LOG(INFO) << "node: " << node->DebugString() << " has already been added!";
auto cnode_arnode_pair = cnode_arnode_map_.find(node);
if (cnode_arnode_pair == cnode_arnode_map_.end()) {
MS_LOG(EXCEPTION) << "node is not in cnode_arnode_map_!";
}
arnode = cnode_arnode_pair->second;
} else {
arnode = std::make_shared<AllreduceNode>(AllreduceNode());
}
if (arnode->Init(node) != SUCCESS) { if (arnode->Init(node) != SUCCESS) {
MS_LOG(ERROR) << "AllreduceNode Init failed"; MS_LOG(ERROR) << "AllreduceNode Init failed";
return FAILED; return FAILED;
...@@ -39,10 +51,6 @@ Status AllreduceGraph::AddNode(const CNodePtr& node, const AnfNodePtr& para) { ...@@ -39,10 +51,6 @@ Status AllreduceGraph::AddNode(const CNodePtr& node, const AnfNodePtr& para) {
if (!arnode_emplace_return.second) { if (!arnode_emplace_return.second) {
MS_LOG(INFO) << "node: " << node->DebugString() << "'s arnode has already been added!"; MS_LOG(INFO) << "node: " << node->DebugString() << "'s arnode has already been added!";
} }
auto cnode_emplace_return = cnode_set_.emplace(node);
if (!cnode_emplace_return.second) {
MS_LOG(INFO) << "node: " << node->DebugString() << " has already been added!";
}
cnode_emplace_return = para_cnodeset_map_[para].emplace(node); cnode_emplace_return = para_cnodeset_map_[para].emplace(node);
if (!cnode_emplace_return.second) { if (!cnode_emplace_return.second) {
MS_LOG(INFO) << "node: " << node->DebugString() << " already in para: " << para->fullname_with_scope() MS_LOG(INFO) << "node: " << node->DebugString() << " already in para: " << para->fullname_with_scope()
...@@ -75,7 +83,7 @@ Status AllreduceGraph::AddEdge(const CNodePtr& from, const CNodePtr& to, double ...@@ -75,7 +83,7 @@ Status AllreduceGraph::AddEdge(const CNodePtr& from, const CNodePtr& to, double
MS_LOG(ERROR) << "from_arnode AddNext failed"; MS_LOG(ERROR) << "from_arnode AddNext failed";
return FAILED; return FAILED;
} }
if (to_arnode->AddPrev(from_arnode, dist) != SUCCESS) { if (to_arnode->AddPrev(from_arnode, dist, &max_) != SUCCESS) {
MS_LOG(ERROR) << "to_arnode AddPrev failed"; MS_LOG(ERROR) << "to_arnode AddPrev failed";
return FAILED; return FAILED;
} }
...@@ -110,7 +118,7 @@ std::pair<std::vector<AnfNodePtr>, double> AllreduceGraph::GetParaByParaSize(dou ...@@ -110,7 +118,7 @@ std::pair<std::vector<AnfNodePtr>, double> AllreduceGraph::GetParaByParaSize(dou
double cur_para_size = 0; double cur_para_size = 0;
double from = to; double from = to;
for (auto& arnode : arnode_vec_) { for (auto& arnode : arnode_vec_) {
if (arnode.depend_feat_size() >= to) { if (arnode.depend_feat_size() != max_ && arnode.depend_feat_size() >= to) {
continue; continue;
} }
if (para_size > 0 && cur_para_size >= para_size && arnode.depend_feat_size() < from) { if (para_size > 0 && cur_para_size >= para_size && arnode.depend_feat_size() < from) {
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
*/ */
#include "parallel/allreduce_fusion/allreduce_node.h" #include "parallel/allreduce_fusion/allreduce_node.h"
#include <queue>
#include "parallel/tensor_layout/tensor_layout.h" #include "parallel/tensor_layout/tensor_layout.h"
#include "utils/log_adapter.h" #include "utils/log_adapter.h"
...@@ -29,7 +30,7 @@ Status AllreduceNode::AddNext(const AllreduceNodePtr& next_node) { ...@@ -29,7 +30,7 @@ Status AllreduceNode::AddNext(const AllreduceNodePtr& next_node) {
return SUCCESS; return SUCCESS;
} }
Status AllreduceNode::AddPrev(const AllreduceNodePtr& prev_node, double dist) { Status AllreduceNode::AddPrev(const AllreduceNodePtr& prev_node, double dist, double* max) {
if (prev_node == nullptr) { if (prev_node == nullptr) {
MS_LOG(ERROR) << "next_node is nullptr!"; MS_LOG(ERROR) << "next_node is nullptr!";
return FAILED; return FAILED;
...@@ -39,7 +40,26 @@ Status AllreduceNode::AddPrev(const AllreduceNodePtr& prev_node, double dist) { ...@@ -39,7 +40,26 @@ Status AllreduceNode::AddPrev(const AllreduceNodePtr& prev_node, double dist) {
return FAILED; return FAILED;
} }
prev_.emplace_back(prev_node); prev_.emplace_back(prev_node);
depend_feat_size_ += prev_node->depend_feat_size() + dist; double add_dist = prev_node->depend_feat_size() + dist;
depend_feat_size_ += add_dist;
if (depend_feat_size_ > *max) {
*max = depend_feat_size_;
}
std::queue<AllreduceNodePtr> next_queue;
for (auto& next : next_) {
next_queue.push(next);
}
while (!next_queue.empty()) {
auto ele = next_queue.front();
ele->AddDependFeatSize(add_dist);
if (ele->depend_feat_size() > *max) {
*max = ele->depend_feat_size();
}
for (auto& next : ele->next()) {
next_queue.push(next);
}
next_queue.pop();
}
return SUCCESS; return SUCCESS;
} }
......
...@@ -39,9 +39,14 @@ class AllreduceNode { ...@@ -39,9 +39,14 @@ class AllreduceNode {
const std::unordered_set<AnfNodePtr>& paras() const { return paras_; } const std::unordered_set<AnfNodePtr>& paras() const { return paras_; }
double curr_para_size() const { return curr_para_size_; } double curr_para_size() const { return curr_para_size_; }
virtual ~AllreduceNode() = default; virtual ~AllreduceNode() = default;
Status AddPrev(const AllreduceNodePtr& prev_node, double dist); // Add previous node
// prev_node is the previous to be added
// max is the current max depend_feat_size of the AllreduceGraph
Status AddPrev(const AllreduceNodePtr& prev_node, double dist, double* max);
Status AddNext(const AllreduceNodePtr& next_node); Status AddNext(const AllreduceNodePtr& next_node);
double depend_feat_size() const { return depend_feat_size_; } double depend_feat_size() const { return depend_feat_size_; }
void AddDependFeatSize(double add_dist) { depend_feat_size_ += add_dist; }
const std::vector<AllreduceNodePtr>& next() const { return next_; }
void ToString() const; void ToString() const;
bool operator<(const AllreduceNode& node) const { return depend_feat_size_ < node.depend_feat_size(); } bool operator<(const AllreduceNode& node) const { return depend_feat_size_ < node.depend_feat_size(); }
bool operator>(const AllreduceNode& node) const { return depend_feat_size_ > node.depend_feat_size(); } bool operator>(const AllreduceNode& node) const { return depend_feat_size_ > node.depend_feat_size(); }
......
...@@ -275,7 +275,7 @@ def test_allreduce_fusion5(): ...@@ -275,7 +275,7 @@ def test_allreduce_fusion5():
expect_dict = {'backbone2.fc8.weight': 3, expect_dict = {'backbone2.fc8.weight': 3,
'backbone2.fc7.weight': 3, 'backbone2.fc7.weight': 3,
'backbone2.fc6.weight': 3, 'backbone2.fc6.weight': 3,
'backbone2.fc5.weight': 2, 'backbone2.fc5.weight': 3,
'backbone2.fc4.weight': 2, 'backbone2.fc4.weight': 2,
'backbone2.fc3.weight': 2, 'backbone2.fc3.weight': 2,
'backbone2.fc2.weight': 1, 'backbone2.fc2.weight': 1,
...@@ -283,7 +283,7 @@ def test_allreduce_fusion5(): ...@@ -283,7 +283,7 @@ def test_allreduce_fusion5():
'backbone1.fc8.weight': 3, 'backbone1.fc8.weight': 3,
'backbone1.fc7.weight': 3, 'backbone1.fc7.weight': 3,
'backbone1.fc6.weight': 3, 'backbone1.fc6.weight': 3,
'backbone1.fc5.weight': 2, 'backbone1.fc5.weight': 3,
'backbone1.fc4.weight': 2, 'backbone1.fc4.weight': 2,
'backbone1.fc3.weight': 2, 'backbone1.fc3.weight': 2,
'backbone1.fc2.weight': 1, 'backbone1.fc2.weight': 1,
......
...@@ -273,13 +273,9 @@ class DatasetLenet(): ...@@ -273,13 +273,9 @@ class DatasetLenet():
return 1 return 1
def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 #131072 #32768 #8192 def train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768):
dev_num = 8 dev_num = 8
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num) context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=dev_num)
cost_model_context.set_cost_model_context(costmodel_gamma=0.001, costmodel_beta=260.0)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
set_algo_parameters(elementwise_op_strategy_follow=True) set_algo_parameters(elementwise_op_strategy_follow=True)
resset_op_id() resset_op_id()
np.random.seed(6) np.random.seed(6)
...@@ -303,8 +299,16 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -303,8 +299,16 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
assert v == [[dev_num, 1]] assert v == [[dev_num, 1]]
allreduce_fusion_dict = _executor._get_allreduce_fusion(model._train_network) allreduce_fusion_dict = _executor._get_allreduce_fusion(model._train_network)
print(allreduce_fusion_dict) print(allreduce_fusion_dict)
return allreduce_fusion_dict
def test_train_32k_8p_fusion1(epoch_size=3, batch_size=32, num_classes=32768): #1048576 #131072 #32768 #8192
cost_model_context.set_cost_model_context(costmodel_gamma=0.001, costmodel_beta=260.0)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
allreduce_fusion_dict = train_32k_8p(epoch_size, batch_size, num_classes)
expect_dict = {'end_point.bias': 2, expect_dict = {'end_point.bias': 2,
'end_point.weight': 2, 'end_point.weight': 2,
'layer4.2.bn3.beta': 2, 'layer4.2.bn3.beta': 2,
...@@ -382,11 +386,11 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -382,11 +386,11 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
'layer3.1.bn1.beta': 2, 'layer3.1.bn1.beta': 2,
'layer3.1.bn1.gamma': 2, 'layer3.1.bn1.gamma': 2,
'layer3.1.conv1.weight': 2, 'layer3.1.conv1.weight': 2,
'layer3.0.bn_down_sample.beta': 1, 'layer3.0.bn_down_sample.beta': 2,
'layer3.0.bn_down_sample.gamma': 1, 'layer3.0.bn_down_sample.gamma': 2,
'layer3.0.conv_down_sample.weight': 2, 'layer3.0.conv_down_sample.weight': 2,
'layer3.0.bn3.beta': 1, 'layer3.0.bn3.beta': 2,
'layer3.0.bn3.gamma': 1, 'layer3.0.bn3.gamma': 2,
'layer3.0.conv3.weight': 2, 'layer3.0.conv3.weight': 2,
'layer3.0.bn2.beta': 2, 'layer3.0.bn2.beta': 2,
'layer3.0.bn2.gamma': 2, 'layer3.0.bn2.gamma': 2,
...@@ -412,8 +416,8 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -412,8 +416,8 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
'layer2.2.bn1.beta': 2, 'layer2.2.bn1.beta': 2,
'layer2.2.bn1.gamma': 2, 'layer2.2.bn1.gamma': 2,
'layer2.2.conv1.weight': 2, 'layer2.2.conv1.weight': 2,
'layer2.1.bn3.beta': 1, 'layer2.1.bn3.beta': 2,
'layer2.1.bn3.gamma': 1, 'layer2.1.bn3.gamma': 2,
'layer2.1.conv3.weight': 2, 'layer2.1.conv3.weight': 2,
'layer2.1.bn2.beta': 2, 'layer2.1.bn2.beta': 2,
'layer2.1.bn2.gamma': 2, 'layer2.1.bn2.gamma': 2,
...@@ -421,11 +425,11 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -421,11 +425,11 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
'layer2.1.bn1.beta': 2, 'layer2.1.bn1.beta': 2,
'layer2.1.bn1.gamma': 2, 'layer2.1.bn1.gamma': 2,
'layer2.1.conv1.weight': 2, 'layer2.1.conv1.weight': 2,
'layer2.0.bn_down_sample.beta': 1, 'layer2.0.bn_down_sample.beta': 2,
'layer2.0.bn_down_sample.gamma': 1, 'layer2.0.bn_down_sample.gamma': 2,
'layer2.0.conv_down_sample.weight': 2, 'layer2.0.conv_down_sample.weight': 2,
'layer2.0.bn3.beta': 1, 'layer2.0.bn3.beta': 2,
'layer2.0.bn3.gamma': 1, 'layer2.0.bn3.gamma': 2,
'layer2.0.conv3.weight': 2, 'layer2.0.conv3.weight': 2,
'layer2.0.bn2.beta': 2, 'layer2.0.bn2.beta': 2,
'layer2.0.bn2.gamma': 2, 'layer2.0.bn2.gamma': 2,
...@@ -442,8 +446,8 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -442,8 +446,8 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
'layer1.2.bn1.beta': 2, 'layer1.2.bn1.beta': 2,
'layer1.2.bn1.gamma': 2, 'layer1.2.bn1.gamma': 2,
'layer1.2.conv1.weight': 2, 'layer1.2.conv1.weight': 2,
'layer1.1.bn3.beta': 1, 'layer1.1.bn3.beta': 2,
'layer1.1.bn3.gamma': 1, 'layer1.1.bn3.gamma': 2,
'layer1.1.conv3.weight': 2, 'layer1.1.conv3.weight': 2,
'layer1.1.bn2.beta': 2, 'layer1.1.bn2.beta': 2,
'layer1.1.bn2.gamma': 2, 'layer1.1.bn2.gamma': 2,
...@@ -451,11 +455,11 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -451,11 +455,11 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
'layer1.1.bn1.beta': 2, 'layer1.1.bn1.beta': 2,
'layer1.1.bn1.gamma': 2, 'layer1.1.bn1.gamma': 2,
'layer1.1.conv1.weight': 2, 'layer1.1.conv1.weight': 2,
'layer1.0.bn_down_sample.beta': 1, 'layer1.0.bn_down_sample.beta': 2,
'layer1.0.bn_down_sample.gamma': 1, 'layer1.0.bn_down_sample.gamma': 2,
'layer1.0.conv_down_sample.weight': 2, 'layer1.0.conv_down_sample.weight': 2,
'layer1.0.bn3.beta': 1, 'layer1.0.bn3.beta': 2,
'layer1.0.bn3.gamma': 1, 'layer1.0.bn3.gamma': 2,
'layer1.0.conv3.weight': 2, 'layer1.0.conv3.weight': 2,
'layer1.0.bn2.beta': 2, 'layer1.0.bn2.beta': 2,
'layer1.0.bn2.gamma': 2, 'layer1.0.bn2.gamma': 2,
...@@ -465,7 +469,180 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576 ...@@ -465,7 +469,180 @@ def test_train_32k_8p(epoch_size=3, batch_size=32, num_classes=32768): #1048576
'layer1.0.conv1.weight': 2, 'layer1.0.conv1.weight': 2,
'bn1.beta': 1, 'bn1.beta': 1,
'bn1.gamma': 1, 'bn1.gamma': 1,
'conv1.weight': 2} 'conv1.weight': 1}
assert (allreduce_fusion_dict == expect_dict)
cost_model_context.reset_cost_model_context()
def test_train_32k_8p_fusion2(epoch_size=3, batch_size=32, num_classes=32768): #1048576 #131072 #32768 #8192
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015)
allreduce_fusion_dict = train_32k_8p(epoch_size, batch_size, num_classes)
expect_dict = {'end_point.bias': 2,
'end_point.weight': 2,
'layer4.2.bn3.beta': 2,
'layer4.2.bn3.gamma': 2,
'layer4.2.conv3.weight': 2,
'layer4.2.bn2.beta': 2,
'layer4.2.bn2.gamma': 2,
'layer4.2.conv2.weight': 2,
'layer4.2.bn1.beta': 2,
'layer4.2.bn1.gamma': 2,
'layer4.2.conv1.weight': 2,
'layer4.1.bn3.beta': 2,
'layer4.1.bn3.gamma': 2,
'layer4.1.conv3.weight': 2,
'layer4.1.bn2.beta': 2,
'layer4.1.bn2.gamma': 2,
'layer4.1.conv2.weight': 2,
'layer4.1.bn1.beta': 2,
'layer4.1.bn1.gamma': 2,
'layer4.1.conv1.weight': 2,
'layer4.0.bn_down_sample.beta': 2,
'layer4.0.bn_down_sample.gamma': 2,
'layer4.0.conv_down_sample.weight': 2,
'layer4.0.bn3.beta': 2,
'layer4.0.bn3.gamma': 2,
'layer4.0.conv3.weight': 2,
'layer4.0.bn2.beta': 2,
'layer4.0.bn2.gamma': 2,
'layer4.0.conv2.weight': 2,
'layer4.0.bn1.beta': 2,
'layer4.0.bn1.gamma': 2,
'layer4.0.conv1.weight': 2,
'layer3.5.bn3.beta': 2,
'layer3.5.bn3.gamma': 2,
'layer3.5.conv3.weight': 2,
'layer3.5.bn2.beta': 2,
'layer3.5.bn2.gamma': 2,
'layer3.5.conv2.weight': 2,
'layer3.5.bn1.beta': 2,
'layer3.5.bn1.gamma': 2,
'layer3.5.conv1.weight': 2,
'layer3.4.bn3.beta': 2,
'layer3.4.bn3.gamma': 2,
'layer3.4.conv3.weight': 2,
'layer3.4.bn2.beta': 2,
'layer3.4.bn2.gamma': 2,
'layer3.4.conv2.weight': 2,
'layer3.4.bn1.beta': 2,
'layer3.4.bn1.gamma': 2,
'layer3.4.conv1.weight': 2,
'layer3.3.bn3.beta': 2,
'layer3.3.bn3.gamma': 2,
'layer3.3.conv3.weight': 2,
'layer3.3.bn2.beta': 2,
'layer3.3.bn2.gamma': 2,
'layer3.3.conv2.weight': 2,
'layer3.3.bn1.beta': 2,
'layer3.3.bn1.gamma': 2,
'layer3.3.conv1.weight': 2,
'layer3.2.bn3.beta': 2,
'layer3.2.bn3.gamma': 2,
'layer3.2.conv3.weight': 2,
'layer3.2.bn2.beta': 2,
'layer3.2.bn2.gamma': 2,
'layer3.2.conv2.weight': 2,
'layer3.2.bn1.beta': 2,
'layer3.2.bn1.gamma': 2,
'layer3.2.conv1.weight': 2,
'layer3.1.bn3.beta': 2,
'layer3.1.bn3.gamma': 2,
'layer3.1.conv3.weight': 2,
'layer3.1.bn2.beta': 2,
'layer3.1.bn2.gamma': 2,
'layer3.1.conv2.weight': 2,
'layer3.1.bn1.beta': 2,
'layer3.1.bn1.gamma': 2,
'layer3.1.conv1.weight': 2,
'layer3.0.bn_down_sample.beta': 2,
'layer3.0.bn_down_sample.gamma': 2,
'layer3.0.conv_down_sample.weight': 2,
'layer3.0.bn3.beta': 2,
'layer3.0.bn3.gamma': 2,
'layer3.0.conv3.weight': 2,
'layer3.0.bn2.beta': 2,
'layer3.0.bn2.gamma': 2,
'layer3.0.conv2.weight': 2,
'layer3.0.bn1.beta': 2,
'layer3.0.bn1.gamma': 2,
'layer3.0.conv1.weight': 2,
'layer2.3.bn3.beta': 2,
'layer2.3.bn3.gamma': 2,
'layer2.3.conv3.weight': 2,
'layer2.3.bn2.beta': 2,
'layer2.3.bn2.gamma': 2,
'layer2.3.conv2.weight': 2,
'layer2.3.bn1.beta': 2,
'layer2.3.bn1.gamma': 2,
'layer2.3.conv1.weight': 2,
'layer2.2.bn3.beta': 2,
'layer2.2.bn3.gamma': 2,
'layer2.2.conv3.weight': 2,
'layer2.2.bn2.beta': 2,
'layer2.2.bn2.gamma': 2,
'layer2.2.conv2.weight': 2,
'layer2.2.bn1.beta': 2,
'layer2.2.bn1.gamma': 2,
'layer2.2.conv1.weight': 2,
'layer2.1.bn3.beta': 2,
'layer2.1.bn3.gamma': 2,
'layer2.1.conv3.weight': 2,
'layer2.1.bn2.beta': 2,
'layer2.1.bn2.gamma': 2,
'layer2.1.conv2.weight': 2,
'layer2.1.bn1.beta': 2,
'layer2.1.bn1.gamma': 2,
'layer2.1.conv1.weight': 2,
'layer2.0.bn_down_sample.beta': 2,
'layer2.0.bn_down_sample.gamma': 2,
'layer2.0.conv_down_sample.weight': 2,
'layer2.0.bn3.beta': 2,
'layer2.0.bn3.gamma': 2,
'layer2.0.conv3.weight': 2,
'layer2.0.bn2.beta': 2,
'layer2.0.bn2.gamma': 2,
'layer2.0.conv2.weight': 2,
'layer2.0.bn1.beta': 2,
'layer2.0.bn1.gamma': 2,
'layer2.0.conv1.weight': 2,
'layer1.2.bn3.beta': 2,
'layer1.2.bn3.gamma': 2,
'layer1.2.conv3.weight': 2,
'layer1.2.bn2.beta': 2,
'layer1.2.bn2.gamma': 2,
'layer1.2.conv2.weight': 2,
'layer1.2.bn1.beta': 2,
'layer1.2.bn1.gamma': 2,
'layer1.2.conv1.weight': 2,
'layer1.1.bn3.beta': 2,
'layer1.1.bn3.gamma': 2,
'layer1.1.conv3.weight': 2,
'layer1.1.bn2.beta': 2,
'layer1.1.bn2.gamma': 2,
'layer1.1.conv2.weight': 2,
'layer1.1.bn1.beta': 2,
'layer1.1.bn1.gamma': 2,
'layer1.1.conv1.weight': 2,
'layer1.0.bn_down_sample.beta': 2,
'layer1.0.bn_down_sample.gamma': 2,
'layer1.0.conv_down_sample.weight': 2,
'layer1.0.bn3.beta': 2,
'layer1.0.bn3.gamma': 2,
'layer1.0.conv3.weight': 2,
'layer1.0.bn2.beta': 2,
'layer1.0.bn2.gamma': 2,
'layer1.0.conv2.weight': 1,
'layer1.0.bn1.beta': 1,
'layer1.0.bn1.gamma': 1,
'layer1.0.conv1.weight': 1,
'bn1.beta': 1,
'bn1.gamma': 1,
'conv1.weight': 1}
assert (allreduce_fusion_dict == expect_dict) assert (allreduce_fusion_dict == expect_dict)
cost_model_context.reset_cost_model_context() cost_model_context.reset_cost_model_context()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册