提交 b0963833 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2045 optimize cpu ftrl

Merge pull request !2045 from kisnwang/optimize-cpu-ftrl
......@@ -18,6 +18,7 @@
#include <unordered_map>
#include <map>
#include <iostream>
#include <utility>
#include <fstream>
#include "nlohmann/json.hpp"
#include "session/anf_runtime_algorithm.h"
......@@ -583,5 +584,55 @@ void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGr
}
unique_grad->indices_size_ = unique_indices_size;
}
void ReduceSparseGradient(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim,
size_t outer_dim) {
MS_EXCEPTION_IF_NULL(origin_sparse_grad.value_);
MS_EXCEPTION_IF_NULL(origin_sparse_grad.indices_);
MS_EXCEPTION_IF_NULL(unique_grad);
MS_EXCEPTION_IF_NULL(unique_grad->value_);
MS_EXCEPTION_IF_NULL(unique_grad->indices_);
size_t unique_indices_size = 0;
std::vector<std::pair<int, size_t>> sorted_indices;
sorted_indices.reserve(origin_sparse_grad.indices_size_);
for (size_t i = 0; i < origin_sparse_grad.indices_size_; ++i) {
int index = origin_sparse_grad.indices_[i];
if (index < 0 || IntToSize(index) >= first_dim) {
continue;
}
sorted_indices.emplace_back(std::pair<int, size_t>(index, i * outer_dim));
}
std::sort(
sorted_indices.begin(), sorted_indices.end(),
[](const std::pair<int, size_t> &left, const std::pair<int, size_t> &right) { return left.first < right.first; });
int last_index = 0;
size_t indices_size = sorted_indices.size();
size_t start_index = 0;
size_t end_index = outer_dim;
size_t dst_len = indices_size * outer_dim;
for (size_t i = 0; i < indices_size; ++i) {
int index = sorted_indices[i].first;
if (i == 0 || last_index != index) {
if (i > 0 && last_index != index) {
unique_indices_size++;
start_index += outer_dim;
end_index += outer_dim;
}
unique_grad->indices_[unique_indices_size] = index;
auto ret_code = memcpy_s(unique_grad->value_ + start_index, dst_len - start_index,
origin_sparse_grad.value_ + sorted_indices[i].second, outer_dim);
if (ret_code != EOK) {
MS_LOG(EXCEPTION) << "Failed to copy data!";
}
} else {
for (size_t j = start_index, k = sorted_indices[i].second; j < end_index; ++j, ++k) {
unique_grad->value_[j] += origin_sparse_grad.value_[k];
}
}
last_index = index;
}
unique_grad->indices_size_ = unique_indices_size;
}
} // namespace kernel
} // namespace mindspore
......@@ -92,6 +92,8 @@ bool IsSameShape(const std::vector<size_t> &shape_a, const std::vector<size_t> &
int Sign(float x);
void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim,
size_t outer_dim);
void ReduceSparseGradient(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim,
size_t outer_dim);
} // namespace kernel
} // namespace mindspore
......
......@@ -37,8 +37,8 @@ void CPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) {
}
void CPUKernel::Init(const CNodePtr &kernel_node) {
InitInputOutputSize(kernel_node);
InitKernel(kernel_node);
InitInputOutputSize(kernel_node);
}
void CPUKernelUtils::ExpandDimsTo4(std::vector<size_t> *shape) {
......
......@@ -23,6 +23,13 @@ namespace {
constexpr size_t kSparseApplyFtrlInputSize = 5;
} // namespace
void SparseApplyFtrlCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) {
CPUKernel::InitInputOutputSize(kernel_node);
MS_EXCEPTION_IF_NULL(kernel_node);
workspace_size_list_.emplace_back(indices_size_ * var_outer_dim_size_ * sizeof(float));
workspace_size_list_.emplace_back(indices_size_ * sizeof(int));
}
void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
......@@ -72,7 +79,7 @@ void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &workspace,
const std::vector<kernel::AddressPtr> & /*outputs*/) {
if (inputs.size() < kSparseApplyFtrlInputSize) {
MS_LOG(EXCEPTION) << "error input output size!";
......@@ -83,14 +90,11 @@ bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
auto linear = reinterpret_cast<float *>(inputs[2]->addr);
auto grad = reinterpret_cast<float *>(inputs[3]->addr);
auto indices = reinterpret_cast<int *>(inputs[4]->addr);
std::vector<float> new_grad;
new_grad.reserve(indices_size_ * var_outer_dim_size_);
std::vector<int> new_indices;
new_indices.reserve(indices_size_);
SparseGradient unique_sparse_grad({new_grad.data(), new_indices.data(), indices_size_});
DeduplicateIndexedSlices(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_,
var_outer_dim_size_);
auto new_grad = reinterpret_cast<float *>(workspace[0]->addr);
auto new_indices = reinterpret_cast<int *>(workspace[1]->addr);
SparseGradient unique_sparse_grad({new_grad, new_indices, indices_size_});
ReduceSparseGradient(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_,
var_outer_dim_size_);
for (size_t i = 0; i < unique_sparse_grad.indices_size_; ++i) {
int index = unique_sparse_grad.indices_[i];
......
......@@ -28,7 +28,7 @@ class SparseApplyFtrlCPUKernel : public CPUKernel {
~SparseApplyFtrlCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
void InitInputOutputSize(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册