Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
ad8a786b
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad8a786b
编写于
7月 23, 2020
作者:
T
TFbunny
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add GPU support to RandomChoiceWithMask
上级
ade60ad3
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
544 addition
and
3 deletion
+544
-3
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cu
...el_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cu
+265
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh
...l_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh
+34
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.cc
...compiler/gpu/random/random_choice_with_mask_gpu_kernel.cc
+26
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.h
..._compiler/gpu/random/random_choice_with_mask_gpu_kernel.h
+129
-0
mindspore/ops/operations/random_ops.py
mindspore/ops/operations/random_ops.py
+4
-3
tests/st/ops/gpu/test_random_choice_with_mask.py
tests/st/ops/gpu/test_random_choice_with_mask.py
+86
-0
未找到文件。
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cu
0 → 100644
浏览文件 @
ad8a786b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh"
#include <algorithm>
int
RcwmRoundUpPower2
(
int
v
)
{
v
--
;
v
|=
v
>>
1
;
v
|=
v
>>
2
;
v
|=
v
>>
4
;
v
|=
v
>>
8
;
v
|=
v
>>
16
;
v
++
;
return
v
;
}
template
<
typename
T
>
__inline__
__device__
void
Swap
(
T
*
lhs
,
T
*
rhs
)
{
T
tmp
=
lhs
[
0
];
lhs
[
0
]
=
rhs
[
0
];
rhs
[
0
]
=
tmp
;
}
template
<
typename
T
,
typename
S
>
__global__
void
InitArray
(
const
int
input_size
,
const
int
ceil_power2
,
const
T
*
input
,
S
*
mask_buff
,
S
*
rank_buff
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
ceil_power2
;
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
mask_buff
[
pos
]
=
(
pos
<
input_size
)
?
static_cast
<
S
>
(
input
[
pos
])
:
0
;
rank_buff
[
pos
]
=
(
pos
<
input_size
&&
input
[
pos
]
!=
false
)
?
pos
:
(
ceil_power2
+
1
);
}
}
template
<
size_t
blockSize
,
typename
T
>
__device__
void
WarpReduce
(
volatile
T
*
sdata
,
size_t
tid
)
{
if
(
blockSize
>=
64
)
sdata
[
tid
]
+=
sdata
[
tid
+
32
];
if
(
blockSize
>=
32
)
sdata
[
tid
]
+=
sdata
[
tid
+
16
];
if
(
blockSize
>=
16
)
sdata
[
tid
]
+=
sdata
[
tid
+
8
];
if
(
blockSize
>=
8
)
sdata
[
tid
]
+=
sdata
[
tid
+
4
];
if
(
blockSize
>=
4
)
sdata
[
tid
]
+=
sdata
[
tid
+
2
];
if
(
blockSize
>=
2
)
sdata
[
tid
]
+=
sdata
[
tid
+
1
];
}
template
<
size_t
blockSize
,
typename
T
>
__global__
void
ReductionSum
(
T
*
g_idata
,
T
*
g_odata
,
size_t
n
)
{
__shared__
T
sdata
[
blockSize
];
size_t
tid
=
threadIdx
.
x
;
size_t
i
=
blockIdx
.
x
*
(
blockSize
)
+
tid
;
size_t
gridSize
=
blockSize
*
gridDim
.
x
;
sdata
[
tid
]
=
0
;
while
(
i
<
n
)
{
sdata
[
tid
]
+=
g_idata
[
i
];
i
+=
gridSize
;
}
__syncthreads
();
if
(
blockSize
>=
1024
)
{
if
(
tid
<
512
)
{
sdata
[
tid
]
+=
sdata
[
tid
+
512
];
}
__syncthreads
();
}
if
(
blockSize
>=
512
)
{
if
(
tid
<
256
)
{
sdata
[
tid
]
+=
sdata
[
tid
+
256
];
}
__syncthreads
();
}
if
(
blockSize
>=
256
)
{
if
(
tid
<
128
)
{
sdata
[
tid
]
+=
sdata
[
tid
+
128
];
}
__syncthreads
();
}
if
(
blockSize
>=
128
)
{
if
(
tid
<
64
)
{
sdata
[
tid
]
+=
sdata
[
tid
+
64
];
}
__syncthreads
();
}
if
(
tid
<
32
)
WarpReduce
<
blockSize
>
(
sdata
,
tid
);
if
(
tid
==
0
)
g_odata
[
blockIdx
.
x
]
=
sdata
[
0
];
}
template
<
typename
T
,
typename
S
>
__global__
void
Reshape2Index
(
const
int
input_size
,
const
int
input_shape_size
,
const
int
d1
,
const
int
d2
,
const
int
d3
,
const
int
d4
,
const
int
d5
,
const
T
*
input
,
S
*
output_index
)
{
int
pos_array
[
MAX_DIMENSION
];
int
index_pos
;
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
input_size
;
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
pos_array
[
0
]
=
pos
/
(
d2
*
d3
*
d4
*
d5
)
%
d1
;
pos_array
[
1
]
=
pos
/
(
d3
*
d4
*
d5
)
%
d2
;
pos_array
[
2
]
=
pos
/
(
d4
*
d5
)
%
d3
;
pos_array
[
3
]
=
pos
/
(
d5
)
%
d4
;
pos_array
[
4
]
=
pos
%
d5
;
index_pos
=
pos
*
input_shape_size
;
if
(
input
[
pos
]
==
false
)
{
for
(
int
i
=
0
;
i
<
input_shape_size
;
i
++
)
{
output_index
[
index_pos
++
]
=
0
;
}
}
else
{
for
(
int
i
=
MAX_DIMENSION
-
input_shape_size
;
i
<
MAX_DIMENSION
;
i
++
)
{
output_index
[
index_pos
++
]
=
pos_array
[
i
];
}
}
}
}
template
<
typename
T
>
__global__
void
Copy
(
const
T
*
src
,
T
*
dst
,
const
int
n
)
{
for
(
size_t
pos
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
pos
<
n
;
pos
+=
blockDim
.
x
*
gridDim
.
x
)
{
dst
[
pos
]
=
src
[
pos
];
}
}
template
<
typename
T
>
__global__
void
Sort
(
const
int
ceil_power2
,
T
*
rank_buff
)
{
for
(
size_t
i
=
2
;
i
<=
ceil_power2
;
i
<<=
1
)
{
for
(
size_t
j
=
(
i
>>
1
);
j
>
0
;
j
>>=
1
)
{
for
(
size_t
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
tid
<
ceil_power2
;
tid
+=
blockDim
.
x
*
gridDim
.
x
)
{
size_t
tid_comp
=
tid
^
j
;
if
(
tid_comp
>
tid
)
{
if
((
tid
&
i
)
==
0
)
{
if
(
rank_buff
[
tid
]
>
rank_buff
[
tid_comp
])
{
Swap
(
&
rank_buff
[
tid
],
&
rank_buff
[
tid_comp
]);
}
}
else
{
if
(
rank_buff
[
tid
]
<
rank_buff
[
tid_comp
])
{
Swap
(
&
rank_buff
[
tid
],
&
rank_buff
[
tid_comp
]);
}
}
}
}
__syncthreads
();
}
}
}
__global__
void
SrandInit
(
const
int
ceil_power2
,
curandState
*
globalState
,
const
int
seedc
)
{
for
(
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
ceil_power2
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
curand_init
(
seedc
,
i
,
0
,
&
globalState
[
i
]);
}
}
template
<
typename
T
>
__global__
void
Shuffle
(
const
int
ceil_power2
,
curandState
*
globalState
,
T
*
rank_buff
)
{
int
limit
=
ceil_power2
+
1
;
int
value
;
for
(
size_t
i
=
2
;
i
<=
ceil_power2
;
i
<<=
1
)
{
for
(
size_t
j
=
(
i
>>
1
);
j
>
0
;
j
>>=
1
)
{
for
(
size_t
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
tid
<
ceil_power2
;
tid
+=
blockDim
.
x
*
gridDim
.
x
)
{
size_t
tid_comp
=
tid
^
j
;
if
(
tid_comp
>
tid
)
{
value
=
static_cast
<
int
>
(
curand
(
&
globalState
[
tid
]));
if
(
value
&
1
)
{
if
(
rank_buff
[
tid
]
!=
limit
&&
rank_buff
[
tid_comp
]
!=
limit
)
{
Swap
(
&
rank_buff
[
tid
],
&
rank_buff
[
tid_comp
]);
}
}
}
}
__syncthreads
();
}
}
}
template
<
typename
T
,
typename
S
>
__global__
void
MoveToOutput
(
const
int
input_shape_size
,
const
int
count
,
const
T
*
input
,
S
*
output_index
,
T
*
output_mask
,
S
*
index_buff
,
S
*
rank_buff
,
S
*
Tnum_buff
)
{
int
Tnum
=
static_cast
<
int
>
(
Tnum_buff
[
0
]);
int
idx
=
0
;
int
pos
;
if
(
count
<=
Tnum
)
{
for
(
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
count
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
idx
=
rank_buff
[
i
];
pos
=
i
;
output_mask
[
pos
]
=
input
[
idx
];
pos
*=
input_shape_size
;
idx
*=
input_shape_size
;
for
(
size_t
j
=
0
;
j
<
input_shape_size
;
j
++
)
{
output_index
[
pos
]
=
index_buff
[
idx
];
pos
++
;
idx
++
;
}
}
}
else
{
for
(
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
count
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
i
<
Tnum
)
{
idx
=
rank_buff
[
i
];
pos
=
i
;
output_mask
[
pos
]
=
input
[
idx
];
pos
*=
input_shape_size
;
idx
*=
input_shape_size
;
for
(
size_t
j
=
0
;
j
<
input_shape_size
;
j
++
)
{
output_index
[
pos
]
=
index_buff
[
idx
];
pos
++
;
idx
++
;
}
}
else
{
pos
=
i
;
output_mask
[
pos
]
=
static_cast
<
T
>
(
0
);
pos
*=
input_shape_size
;
for
(
size_t
j
=
0
;
j
<
input_shape_size
;
j
++
)
{
output_index
[
pos
]
=
static_cast
<
S
>
(
0
);
pos
++
;
}
}
}
}
}
template
<
typename
T
,
typename
S
>
void
CalRandomChoiceWithMask
(
const
int
&
input_size
,
const
int
&
input_shape_size
,
const
int
&
d1
,
const
int
&
d2
,
const
int
&
d3
,
const
int
&
d4
,
const
int
&
d5
,
const
int
&
seedc
,
const
int
&
count
,
const
T
*
input
,
S
*
output_index
,
T
*
output_mask
,
S
*
index_buff
,
S
*
mask_buff
,
S
*
rank_buff
,
S
*
Tnum_buff
,
S
*
tmp_buff
,
curandState
*
globalState
,
cudaStream_t
stream
)
{
int
ceil_power2
=
RcwmRoundUpPower2
(
input_size
);
InitArray
<<<
GET_BLOCKS
(
input_size
),
GET_THREADS
,
0
,
stream
>>>
(
input_size
,
ceil_power2
,
input
,
mask_buff
,
rank_buff
);
size_t
BLOCKNUM
;
size_t
n
=
ceil_power2
;
Copy
<<<
GET_BLOCKS
(
input_size
),
GET_THREADS
,
0
,
stream
>>>
(
mask_buff
,
tmp_buff
,
ceil_power2
);
do
{
BLOCKNUM
=
std
::
ceil
(
static_cast
<
float
>
(
n
)
/
BLOCKSIZE
);
ReductionSum
<
BLOCKSIZE
,
S
><<<
BLOCKNUM
,
BLOCKSIZE
,
0
,
stream
>>>
(
tmp_buff
,
Tnum_buff
,
n
);
Copy
<<<
GET_BLOCKS
(
input_size
),
GET_THREADS
,
0
,
stream
>>>
(
Tnum_buff
,
tmp_buff
,
BLOCKNUM
);
n
=
BLOCKNUM
;
}
while
(
n
>
BLOCKSIZE
);
if
(
n
>
1
)
ReductionSum
<
BLOCKSIZE
,
S
><<<
1
,
BLOCKSIZE
,
0
,
stream
>>>
(
Tnum_buff
,
Tnum_buff
,
n
);
Reshape2Index
<<<
GET_BLOCKS
(
input_size
),
GET_THREADS
,
0
,
stream
>>>
(
input_size
,
input_shape_size
,
d1
,
d2
,
d3
,
d4
,
d5
,
input
,
index_buff
);
Sort
<<<
GET_BLOCKS
(
ceil_power2
),
GET_THREADS
,
0
,
stream
>>>
(
ceil_power2
,
rank_buff
);
SrandInit
<<<
GET_BLOCKS
(
ceil_power2
),
GET_THREADS
,
0
,
stream
>>>
(
ceil_power2
,
globalState
,
seedc
);
Shuffle
<<<
GET_BLOCKS
(
ceil_power2
),
GET_THREADS
,
0
,
stream
>>>
(
ceil_power2
,
globalState
,
rank_buff
);
MoveToOutput
<<<
GET_BLOCKS
(
count
),
GET_THREADS
,
0
,
stream
>>>
(
input_shape_size
,
count
,
input
,
output_index
,
output_mask
,
index_buff
,
rank_buff
,
Tnum_buff
);
}
template
void
CalRandomChoiceWithMask
(
const
int
&
input_size
,
const
int
&
input_shape_size
,
const
int
&
d1
,
const
int
&
d2
,
const
int
&
d3
,
const
int
&
d4
,
const
int
&
d5
,
const
int
&
seedc
,
const
int
&
count
,
const
bool
*
input
,
int
*
output_index
,
bool
*
output_mask
,
int
*
index_buff
,
int
*
mask_buff
,
int
*
rank_buff
,
int
*
Tnum_buff
,
int
*
tmp_buff
,
curandState
*
globalState
,
cudaStream_t
stream
);
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh
0 → 100644
浏览文件 @
ad8a786b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
#include <cuda_runtime.h>
#include <curand_kernel.h>
#include "runtime/device/gpu/cuda_common.h"
#define BLOCKSIZE 256
#define MAX_DIMENSION 5
template
<
typename
T
,
typename
S
>
void
CalRandomChoiceWithMask
(
const
int
&
input_size
,
const
int
&
input_shape_size
,
const
int
&
d1
,
const
int
&
d2
,
const
int
&
d3
,
const
int
&
d4
,
const
int
&
d5
,
const
int
&
seedc
,
const
int
&
count
,
const
T
*
input
,
S
*
output_index
,
T
*
output_mask
,
S
*
index_buff
,
S
*
mask_buff
,
S
*
rank_buff
,
S
*
Tnum_buff
,
S
*
tmp_buff
,
curandState
*
globalState
,
cudaStream_t
stream
);
int
RcwmRoundUpPower2
(
int
v
);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
mindspore/ccsrc/backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.cc
0 → 100644
浏览文件 @
ad8a786b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
MS_REG_GPU_KERNEL_TWO
(
RandomChoiceWithMask
,
KernelAttr
().
AddInputAttr
(
kNumberTypeBool
).
AddOutputAttr
(
kNumberTypeInt32
).
AddOutputAttr
(
kNumberTypeBool
),
RandomChoiceWithMaskGpuKernel
,
bool
,
int
)
}
}
// namespace mindspore
mindspore/ccsrc/backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.h
0 → 100644
浏览文件 @
ad8a786b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh"
namespace
mindspore
{
namespace
kernel
{
template
<
typename
T
,
typename
S
>
class
RandomChoiceWithMaskGpuKernel
:
public
GpuKernel
{
public:
RandomChoiceWithMaskGpuKernel
()
:
input_shape_size_
(
0
),
seedc_
(
0
),
input_size_
(
1
),
count_
(
0
),
ceil_power2_
(
0
)
{}
~
RandomChoiceWithMaskGpuKernel
()
override
=
default
;
const
std
::
vector
<
size_t
>
&
GetInputSizeList
()
const
override
{
return
input_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetOutputSizeList
()
const
override
{
return
output_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetWorkspaceSizeList
()
const
override
{
return
workspace_size_list_
;
}
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspaces
,
const
std
::
vector
<
AddressPtr
>
&
outputs
,
void
*
stream_ptr
)
override
{
T
*
input
=
GetDeviceAddress
<
T
>
(
inputs
,
0
);
S
*
output_index
=
GetDeviceAddress
<
S
>
(
outputs
,
0
);
T
*
output_mask
=
GetDeviceAddress
<
T
>
(
outputs
,
1
);
S
*
index_buff
=
GetDeviceAddress
<
S
>
(
workspaces
,
0
);
S
*
mask_buff
=
GetDeviceAddress
<
S
>
(
workspaces
,
1
);
S
*
rank_buff
=
GetDeviceAddress
<
S
>
(
workspaces
,
2
);
S
*
Tnum_buff
=
GetDeviceAddress
<
S
>
(
workspaces
,
3
);
S
*
tmp_buff
=
GetDeviceAddress
<
S
>
(
workspaces
,
4
);
void
*
States
=
GetDeviceAddress
<
void
*>
(
workspaces
,
5
);
curandState
*
devStates
=
reinterpret_cast
<
curandState
*>
(
States
);
CalRandomChoiceWithMask
(
input_size_
,
input_shape_size_
,
input_shape_5D_
[
0
],
input_shape_5D_
[
1
],
input_shape_5D_
[
2
],
input_shape_5D_
[
3
],
input_shape_5D_
[
4
],
seedc_
,
count_
,
input
,
output_index
,
output_mask
,
index_buff
,
mask_buff
,
rank_buff
,
Tnum_buff
,
tmp_buff
,
devStates
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
return
true
;
}
bool
Init
(
const
CNodePtr
&
kernel_node
)
override
{
size_t
input_num
=
AnfAlgo
::
GetInputTensorNum
(
kernel_node
);
if
(
input_num
!=
1
)
{
MS_LOG
(
ERROR
)
<<
"Input number is "
<<
input_num
<<
", but RandomChoiceWithMask needs 1 input."
;
return
false
;
}
size_t
output_num
=
AnfAlgo
::
GetOutputTensorNum
(
kernel_node
);
if
(
output_num
!=
2
)
{
MS_LOG
(
ERROR
)
<<
"Output number is "
<<
output_num
<<
", but RandomChoiceWithMask has 2 outputs."
;
return
false
;
}
auto
input_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
input_shape_size_
=
input_shape
.
size
();
if
(
input_shape_size_
<
1
||
input_shape_size_
>
MAX_DIMENSION
)
{
MS_LOG
(
ERROR
)
<<
"Input is "
<<
input_shape_size_
<<
"-D, but RandomChoiceWithMask supports only 1-D to 5-D inputs."
;
return
false
;
}
// convert size_t to int
for
(
auto
i
=
0
;
i
<
input_shape_size_
;
i
++
)
{
input_shape_5D_
.
push_back
(
input_shape
[
i
]);
}
// convert shape to 5D
while
(
input_shape_5D_
.
size
()
!=
MAX_DIMENSION
)
{
input_shape_5D_
.
insert
(
input_shape_5D_
.
begin
(),
1
);
}
// init seedc_
int
seed
=
GetAttr
<
int
>
(
kernel_node
,
"seed"
);
int
seed2
=
GetAttr
<
int
>
(
kernel_node
,
"seed2"
);
if
(
seed2
!=
0
)
seedc_
=
seed2
;
else
if
(
seed
!=
0
)
seedc_
=
seed
;
else
seedc_
=
time
(
NULL
);
// init memory
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
i
++
)
{
input_size_
*=
input_shape
[
i
];
}
count_
=
GetAttr
<
int
>
(
kernel_node
,
"count"
);
// upper ceiling for input for ceil_power2
ceil_power2_
=
RcwmRoundUpPower2
(
input_size_
);
InitSizeLists
();
return
true
;
}
protected:
void
InitSizeLists
()
override
{
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
output_size_list_
.
push_back
(
count_
*
input_shape_size_
*
sizeof
(
S
));
output_size_list_
.
push_back
(
count_
*
sizeof
(
T
));
workspace_size_list_
.
push_back
(
input_size_
*
input_shape_size_
*
sizeof
(
S
));
workspace_size_list_
.
push_back
(
ceil_power2_
*
sizeof
(
S
));
workspace_size_list_
.
push_back
(
ceil_power2_
*
sizeof
(
S
));
int
blocknum
=
std
::
ceil
(
static_cast
<
float
>
(
ceil_power2_
)
/
BLOCKSIZE
);
workspace_size_list_
.
push_back
(
blocknum
*
sizeof
(
S
));
workspace_size_list_
.
push_back
(
ceil_power2_
*
sizeof
(
S
));
workspace_size_list_
.
push_back
(
ceil_power2_
*
sizeof
(
curandState
));
}
private:
int
input_shape_size_
;
int
seedc_
;
int
input_size_
;
int
count_
;
int
ceil_power2_
;
std
::
vector
<
int
>
input_shape_5D_
;
std
::
vector
<
size_t
>
input_size_list_
;
std
::
vector
<
size_t
>
output_size_list_
;
std
::
vector
<
size_t
>
workspace_size_list_
;
};
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
mindspore/ops/operations/random_ops.py
浏览文件 @
ad8a786b
...
...
@@ -348,13 +348,13 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
seed2 (int): Random seed2. Default: 0.
Inputs:
- **input_x** (Tensor[bool]) - The input tensor.
- **input_x** (Tensor[bool]) - The input tensor.
The input tensor rank should be >= 1 and <= 5.
Outputs:
Two tensors, the first one is the index tensor and the other one is the mask tensor.
- **index** (Tensor) - The output
has shape between 2-D and 5
-D.
- **mask** (Tensor) - The output
has shape
1-D.
- **index** (Tensor) - The output
shape is 2
-D.
- **mask** (Tensor) - The output
shape is
1-D.
Examples:
>>> rnd_choice_mask = P.RandomChoiceWithMask()
...
...
@@ -372,6 +372,7 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
def
infer_shape
(
self
,
x_shape
):
validator
.
check_integer
(
"input_x rank"
,
len
(
x_shape
),
1
,
Rel
.
GE
,
self
.
name
)
validator
.
check_integer
(
"input_x rank"
,
len
(
x_shape
),
5
,
Rel
.
LE
,
self
.
name
)
return
([
self
.
count
,
len
(
x_shape
)],
[
self
.
count
])
def
infer_dtype
(
self
,
x_dtype
):
...
...
tests/st/ops/gpu/test_random_choice_with_mask.py
0 → 100644
浏览文件 @
ad8a786b
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
pytest
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.ops
import
operations
as
P
class
RCWM_count_in
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
RCWM_count_in
,
self
).
__init__
()
self
.
RCWM_count_in
=
P
.
RandomChoiceWithMask
(
count
=
4
,
seed
=
1
)
def
construct
(
self
,
x
):
return
self
.
RCWM_count_in
(
x
)
class
RCWM_count_out
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
RCWM_count_out
,
self
).
__init__
()
self
.
RCWM_count_out
=
P
.
RandomChoiceWithMask
(
count
=
10
,
seed
=
1
)
def
construct
(
self
,
x
):
return
self
.
RCWM_count_out
(
x
)
class
RCWM_3D
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
RCWM_3D
,
self
).
__init__
()
self
.
RCWM_3D
=
P
.
RandomChoiceWithMask
(
count
=
10
,
seed
=
1
)
def
construct
(
self
,
x
):
return
self
.
RCWM_3D
(
x
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_RCWM_3D
():
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"GPU"
)
input_tensor
=
Tensor
(
np
.
ones
([
3
,
4
,
5
]).
astype
(
np
.
bool
))
expect1
=
[[
0
,
1
,
1
],
[
0
,
2
,
1
],
[
0
,
2
,
2
],
[
1
,
0
,
1
],
[
0
,
1
,
3
],
[
0
,
3
,
0
],
[
1
,
3
,
2
],
\
[
0
,
0
,
0
],
[
1
,
1
,
2
],
[
1
,
3
,
4
]]
expect2
=
[
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
]
rcwm
=
RCWM_3D
()
output1
,
output2
=
rcwm
(
input_tensor
)
assert
np
.
all
(
output1
.
asnumpy
()
==
np
.
array
(
expect1
)),
"output: {}, expect: {}"
.
format
(
output1
,
expect1
)
assert
np
.
all
(
output2
.
asnumpy
()
==
np
.
array
(
expect2
)),
"output: {}, expect: {}"
.
format
(
output2
,
expect2
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_RCWM_count_out
():
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"GPU"
)
input_tensor
=
Tensor
(
np
.
array
([[
1
,
0
,
1
,
0
],
[
0
,
0
,
0
,
1
],
[
1
,
1
,
1
,
1
],
[
0
,
0
,
0
,
1
]]).
astype
(
np
.
bool
))
expect1
=
[[
0
,
2
],
[
2
,
2
],
[
2
,
1
],
[
2
,
0
],
[
0
,
0
],
[
3
,
3
],
[
2
,
3
],
[
1
,
3
],
[
0
,
0
],
[
0
,
0
]]
expect2
=
[
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
False
,
False
]
rcwm
=
RCWM_count_out
()
output1
,
output2
=
rcwm
(
input_tensor
)
assert
np
.
all
(
output1
.
asnumpy
()
==
np
.
array
(
expect1
)),
"output: {}, expect: {}"
.
format
(
output1
,
expect1
)
assert
np
.
all
(
output2
.
asnumpy
()
==
np
.
array
(
expect2
)),
"output: {}, expect: {}"
.
format
(
output2
,
expect2
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_RCWM_count_in
():
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"GPU"
)
input_tensor
=
Tensor
(
np
.
array
([[
1
,
0
,
1
,
0
],
[
0
,
0
,
0
,
1
],
[
1
,
1
,
1
,
1
],
[
0
,
0
,
0
,
1
]]).
astype
(
np
.
bool
))
expect1
=
[[
0
,
2
],
[
2
,
2
],
[
2
,
1
],
[
2
,
0
]]
expect2
=
[
True
,
True
,
True
,
True
]
rcwm
=
RCWM_count_in
()
output1
,
output2
=
rcwm
(
input_tensor
)
assert
np
.
all
(
output1
.
asnumpy
()
==
np
.
array
(
expect1
)),
"output: {}, expect: {}"
.
format
(
output1
,
expect1
)
assert
np
.
all
(
output2
.
asnumpy
()
==
np
.
array
(
expect2
)),
"output: {}, expect: {}"
.
format
(
output2
,
expect2
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录