Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
ac78ac97
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ac78ac97
编写于
6月 23, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 23, 2020
浏览文件
操作
浏览文件
下载
差异文件
!2297 add vm support for operators include MatrixDiag, MatrixDiagPart etc
Merge pull request !2297 from jiangjinsheng/vm_matrixdiag
上级
d1f107c8
017ff492
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
433 addition
and
2 deletion
+433
-2
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
+4
-1
mindspore/nn/layer/basic.py
mindspore/nn/layer/basic.py
+113
-1
mindspore/ops/_op_impl/tbe/__init__.py
mindspore/ops/_op_impl/tbe/__init__.py
+3
-0
mindspore/ops/_op_impl/tbe/matrix_diag.py
mindspore/ops/_op_impl/tbe/matrix_diag.py
+45
-0
mindspore/ops/_op_impl/tbe/matrix_diag_part.py
mindspore/ops/_op_impl/tbe/matrix_diag_part.py
+45
-0
mindspore/ops/_op_impl/tbe/matrix_set_diag.py
mindspore/ops/_op_impl/tbe/matrix_set_diag.py
+46
-0
mindspore/ops/operations/_inner_ops.py
mindspore/ops/operations/_inner_ops.py
+141
-0
tests/ut/python/ops/test_nn_ops.py
tests/ut/python/ops/test_nn_ops.py
+17
-0
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+19
-0
未找到文件。
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
浏览文件 @
ac78ac97
...
@@ -124,7 +124,10 @@ static std::map<string, string> tbe_func_adapter_map = {
...
@@ -124,7 +124,10 @@ static std::map<string, string> tbe_func_adapter_map = {
{
"a_cos_grad"
,
"acos_grad"
},
{
"a_cos_grad"
,
"acos_grad"
},
{
"histogram_fixed_width"
,
"histogram_fixed_width_d"
},
{
"histogram_fixed_width"
,
"histogram_fixed_width_d"
},
{
"broadcast_to"
,
"broadcast_to_d"
},
{
"broadcast_to"
,
"broadcast_to_d"
},
{
"inplace_update"
,
"inplace_update_d"
}};
{
"inplace_update"
,
"inplace_update_d"
},
{
"matrix_diag"
,
"matrix_diag_d"
},
{
"matrix_diag_part"
,
"matrix_diag_part_d"
},
{
"matrix_set_diag"
,
"matrix_set_diag_d"
}};
void
TbeAdapter
::
NormalizeFuncName
(
std
::
string
*
func_name
)
{
void
TbeAdapter
::
NormalizeFuncName
(
std
::
string
*
func_name
)
{
if
(
func_name
==
nullptr
)
{
if
(
func_name
==
nullptr
)
{
...
...
mindspore/nn/layer/basic.py
浏览文件 @
ac78ac97
...
@@ -31,9 +31,12 @@ from mindspore.ops import _selected_ops
...
@@ -31,9 +31,12 @@ from mindspore.ops import _selected_ops
from
..cell
import
Cell
from
..cell
import
Cell
from
.activation
import
get_activation
from
.activation
import
get_activation
from
..._checkparam
import
Validator
as
validator
from
..._checkparam
import
Validator
as
validator
from
..._checkparam
import
Rel
__all__
=
[
'Dropout'
,
'Flatten'
,
'Dense'
,
'ClipByNorm'
,
'Norm'
,
'OneHot'
,
'Pad'
,
'Unfold'
]
__all__
=
[
'Dropout'
,
'Flatten'
,
'Dense'
,
'ClipByNorm'
,
'Norm'
,
'OneHot'
,
'Pad'
,
'Unfold'
,
'MatrixDiag'
,
'MatrixDiagPart'
,
'MatrixSetDiag'
]
class
Dropout
(
Cell
):
class
Dropout
(
Cell
):
r
"""
r
"""
...
@@ -527,3 +530,112 @@ class Unfold(Cell):
...
@@ -527,3 +530,112 @@ class Unfold(Cell):
ret
=
self
.
extract_image_patches
(
x_transpose
)
ret
=
self
.
extract_image_patches
(
x_transpose
)
ret_transpose
=
self
.
transpose
(
ret
,
self
.
format_NCHW
)
ret_transpose
=
self
.
transpose
(
ret
,
self
.
format_NCHW
)
return
ret_transpose
return
ret_transpose
@
constexpr
def
_get_matrix_diag_assist
(
x_shape
,
x_dtype
):
validator
.
check_integer
(
"x rank"
,
len
(
x_shape
),
1
,
Rel
.
GE
,
"_get_matrix_diag_assist"
)
base_eye
=
np
.
eye
(
x_shape
[
-
1
],
x_shape
[
-
1
]).
reshape
(
-
1
)
assist
=
np
.
tile
(
base_eye
,
x_shape
[:
-
1
]).
reshape
(
x_shape
+
(
x_shape
[
-
1
],))
return
Tensor
(
assist
,
x_dtype
)
@
constexpr
def
_get_matrix_diag_part_assist
(
x_shape
,
x_dtype
):
validator
.
check_integer
(
"x rank"
,
len
(
x_shape
),
2
,
Rel
.
GE
,
"_get_matrix_diag_part_assist"
)
base_eye
=
np
.
eye
(
x_shape
[
-
2
],
x_shape
[
-
1
]).
reshape
(
-
1
)
assist
=
np
.
tile
(
base_eye
,
x_shape
[:
-
2
]).
reshape
(
x_shape
)
return
Tensor
(
assist
,
x_dtype
)
class
MatrixDiag
(
Cell
):
"""
Returns a batched diagonal tensor with a given batched diagonal values.
Inputs:
- **x** (Tensor) - The diagonal values. It can be of the following data types:
float32, float16, int32, int8, uint8.
Outputs:
Tensor, same type as input `x`. The shape should be x.shape + (x.shape[-1], ).
Examples:
>>> x = Tensor(np.array([1, -1]), mstype.float32)
>>> matrix_diag = nn.MatrixDiag()
>>> result = matrix_diag(x)
[[1. 0.]
[0. -1.]]
"""
def
__init__
(
self
):
super
(
MatrixDiag
,
self
).
__init__
()
self
.
matrix_diag
=
inner
.
MatrixDiag
()
self
.
dtype
=
P
.
DType
()
def
construct
(
self
,
input_x
):
x_shape
=
F
.
shape
(
input_x
)
x_dtype
=
self
.
dtype
(
input_x
)
assist
=
_get_matrix_diag_assist
(
x_shape
,
x_dtype
)
out_matrix_diag
=
self
.
matrix_diag
(
input_x
,
assist
)
return
out_matrix_diag
class
MatrixDiagPart
(
Cell
):
r
"""
Returns the batched diagonal part of a batched tensor.
Inputs:
- **x** (Tensor) - The batched tensor. It can be of the following data types:
float32, float16, int32, int8, uint8.
Outputs:
Tensor, same type as input `x`. The shape should be x.shape[:-2] + [min(x.shape[-2:])].
Examples:
>>> x = Tensor([[[-1, 0], [0, 1]], [-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> matrix_diag_part = nn.MatrixDiagPart()
>>> result = matrix_diag_part(x)
[[-1., 1.], [-1., 1.], [-1., 1.]]
"""
def
__init__
(
self
):
super
(
MatrixDiagPart
,
self
).
__init__
()
self
.
matrix_diag_part
=
inner
.
MatrixDiagPart
()
self
.
dtype
=
P
.
DType
()
def
construct
(
self
,
input_x
):
x_shape
=
F
.
shape
(
input_x
)
x_dtype
=
self
.
dtype
(
input_x
)
assist
=
_get_matrix_diag_part_assist
(
x_shape
,
x_dtype
)
out_matrix_diag_part
=
self
.
matrix_diag_part
(
input_x
,
assist
)
return
out_matrix_diag_part
class
MatrixSetDiag
(
Cell
):
r
"""
Modify the batched diagonal part of a batched tensor.
Inputs:
- **x** (Tensor) - The batched tensor. It can be of the following data types:
float32, float16, int32, int8, uint8.
- **diagonal** (Tensor) - The diagonal values.
Outputs:
Tensor, same type as input `x`. The shape same as `x`.
Examples:
>>> x = Tensor([[[-1, 0], [0, 1]], [-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32)
>>> matrix_set_diag = nn.MatrixSetDiag()
>>> result = matrix_set_diag(x, diagonal)
[[[-1, 0], [0, 2]], [-1, 0], [0, 1]], [[-1, 0], [0, 1]]]
"""
def
__init__
(
self
):
super
(
MatrixSetDiag
,
self
).
__init__
()
self
.
matrix_set_diag
=
inner
.
MatrixSetDiag
()
self
.
dtype
=
P
.
DType
()
def
construct
(
self
,
input_x
,
diagonal
):
x_shape
=
F
.
shape
(
input_x
)
x_dtype
=
self
.
dtype
(
input_x
)
assist
=
_get_matrix_diag_part_assist
(
x_shape
,
x_dtype
)
out_matrix_set_diag
=
self
.
matrix_set_diag
(
input_x
,
diagonal
,
assist
)
return
out_matrix_set_diag
mindspore/ops/_op_impl/tbe/__init__.py
浏览文件 @
ac78ac97
...
@@ -264,3 +264,6 @@ from .inplace_update import _inplace_update_tbe
...
@@ -264,3 +264,6 @@ from .inplace_update import _inplace_update_tbe
from
.splitv
import
_split_v_tbe
from
.splitv
import
_split_v_tbe
from
.in_top_k
import
_in_top_k_tbe
from
.in_top_k
import
_in_top_k_tbe
from
.lin_space
import
_lin_space_tbe
from
.lin_space
import
_lin_space_tbe
from
.matrix_diag
import
_matrix_diag_tbe
from
.matrix_diag_part
import
_matrix_diag_part_tbe
from
.matrix_set_diag
import
_matrix_set_diag_tbe
mindspore/ops/_op_impl/tbe/matrix_diag.py
0 → 100644
浏览文件 @
ac78ac97
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MatrixDiagD op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
matrix_diag_d_op_info
=
TBERegOp
(
"MatrixDiag"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"matrix_diag_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"matrix_diag_d"
)
\
.
partial_flag
(
True
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"assist"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I32_5HD
,
DataType
.
I32_5HD
,
DataType
.
I32_5HD
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
dtype_format
(
DataType
.
I8_5HD
,
DataType
.
I8_5HD
,
DataType
.
I8_5HD
)
\
.
dtype_format
(
DataType
.
I8_Default
,
DataType
.
I8_Default
,
DataType
.
I8_Default
)
\
.
dtype_format
(
DataType
.
U8_5HD
,
DataType
.
U8_5HD
,
DataType
.
U8_5HD
)
\
.
dtype_format
(
DataType
.
U8_Default
,
DataType
.
U8_Default
,
DataType
.
U8_Default
)
\
.
get_op_info
()
@
op_info_register
(
matrix_diag_d_op_info
)
def
_matrix_diag_tbe
():
"""MatrixDiagD TBE register"""
return
mindspore/ops/_op_impl/tbe/matrix_diag_part.py
0 → 100644
浏览文件 @
ac78ac97
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MatrixDiagPartD op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
matrix_diag_part_d_op_info
=
TBERegOp
(
"MatrixDiagPart"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"matrix_diag_part_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"matrix_diag_part_d"
)
\
.
partial_flag
(
True
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"assist"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I32_5HD
,
DataType
.
I32_5HD
,
DataType
.
I32_5HD
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
dtype_format
(
DataType
.
I8_5HD
,
DataType
.
I8_5HD
,
DataType
.
I8_5HD
)
\
.
dtype_format
(
DataType
.
I8_Default
,
DataType
.
I8_Default
,
DataType
.
I8_Default
)
\
.
dtype_format
(
DataType
.
U8_5HD
,
DataType
.
U8_5HD
,
DataType
.
U8_5HD
)
\
.
dtype_format
(
DataType
.
U8_Default
,
DataType
.
U8_Default
,
DataType
.
U8_Default
)
\
.
get_op_info
()
@
op_info_register
(
matrix_diag_part_d_op_info
)
def
_matrix_diag_part_tbe
():
"""MatrixDiagPartD TBE register"""
return
mindspore/ops/_op_impl/tbe/matrix_set_diag.py
0 → 100644
浏览文件 @
ac78ac97
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MatrixSetDiagD op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
matrix_diag_d_op_info
=
TBERegOp
(
"MatrixSetDiag"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"matrix_diag_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"matrix_diag_d"
)
\
.
partial_flag
(
True
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"diagonal"
,
False
,
"required"
,
"all"
)
\
.
input
(
2
,
"assist"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F16_5HD
,
DataType
.
F16_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I32_5HD
,
DataType
.
I32_5HD
,
DataType
.
I32_5HD
,
DataType
.
I32_5HD
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
dtype_format
(
DataType
.
I8_5HD
,
DataType
.
I8_5HD
,
DataType
.
I8_5HD
,
DataType
.
I8_5HD
)
\
.
dtype_format
(
DataType
.
I8_Default
,
DataType
.
I8_Default
,
DataType
.
I8_Default
,
DataType
.
I8_Default
)
\
.
dtype_format
(
DataType
.
U8_5HD
,
DataType
.
U8_5HD
,
DataType
.
U8_5HD
,
DataType
.
U8_5HD
)
\
.
dtype_format
(
DataType
.
U8_Default
,
DataType
.
U8_Default
,
DataType
.
U8_Default
,
DataType
.
U8_Default
)
\
.
get_op_info
()
@
op_info_register
(
matrix_diag_d_op_info
)
def
_matrix_set_diag_tbe
():
"""MatrixSetDiagD TBE register"""
return
mindspore/ops/operations/_inner_ops.py
浏览文件 @
ac78ac97
...
@@ -367,3 +367,144 @@ class LinSpace(PrimitiveWithInfer):
...
@@ -367,3 +367,144 @@ class LinSpace(PrimitiveWithInfer):
args
=
{
"assist"
:
assist
,
"start"
:
start
,
"stop"
:
stop
}
args
=
{
"assist"
:
assist
,
"start"
:
start
,
"stop"
:
stop
}
validator
.
check_tensor_type_same
(
args
,
(
mstype
.
float32
,),
self
.
name
)
validator
.
check_tensor_type_same
(
args
,
(
mstype
.
float32
,),
self
.
name
)
return
assist
return
assist
class
MatrixDiag
(
PrimitiveWithInfer
):
"""
Returns a batched diagonal tensor with a given batched diagonal values.
Inputs:
- **x** (Tensor) - A tensor which to be element-wise multi by `assist`. It can be of the following data types:
float32, float16, int32, int8, uint8.
- **assist** (Tensor) - A eye tensor of the same type as `x`. It's rank must greater than or equal to 2 and
it's last dimension must equal to the second to last dimension.
Outputs:
Tensor, has the same type and shape as input `assist`.
Examples:
>>> x = Tensor(np.array([1, -1]), mstype.float32)
>>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32)
>>> matrix_diag = P.MatrixDiag()
>>> result = matrix_diag(x, assist)
[[[-12. 11.]
[-10. 9.]]
[[ -8. 7.]
[ -6. 5.]]
[[ -4. 3.]
[ -2. 1.]]]
"""
@
prim_attr_register
def
__init__
(
self
):
"""init MatrixDiag"""
def
infer_dtype
(
self
,
x_dtype
,
assist_dtype
):
valid_type
=
[
mstype
.
float16
,
mstype
.
float32
,
mstype
.
int32
,
mstype
.
int8
,
mstype
.
uint8
]
args
=
{
"x"
:
x_dtype
,
"assist"
:
assist_dtype
}
validator
.
check_tensor_type_same
(
args
,
valid_type
,
self
.
name
)
return
x_dtype
def
infer_shape
(
self
,
x_shape
,
assist_shape
):
validator
.
check_integer
(
"assist rank"
,
len
(
assist_shape
),
2
,
Rel
.
GE
,
self
.
name
)
validator
.
check
(
'rank of x'
,
len
(
x_shape
)
+
1
,
'rank of assist'
,
len
(
assist_shape
),
Rel
.
LE
,
self
.
name
)
validator
.
check
(
'assist
\'
s penultimate dimension'
,
assist_shape
[
-
2
],
'assist
\'
s last dimension'
,
assist_shape
[
-
1
],
Rel
.
EQ
,
self
.
name
)
r_end_dim
=
-
len
(
x_shape
)
r_idx
=
-
1
while
r_idx
>=
r_end_dim
:
if
x_shape
[
r_idx
]
!=
1
:
validator
.
check
(
"reverse x dim %d"
%
r_idx
,
x_shape
[
r_idx
],
"reverse assist dim %d"
%
assist_shape
[
r_idx
-
1
],
assist_shape
[
r_idx
-
1
],
Rel
.
EQ
,
self
.
name
)
r_idx
=
r_idx
-
1
return
assist_shape
class
MatrixDiagPart
(
PrimitiveWithInfer
):
r
"""
Returns the batched diagonal part of a batched tensor.
Inputs:
- **x** (Tensor) - The batched tensor. It can be of the following data types:
float32, float16, int32, int8, uint8.
- **assist** (Tensor) - A eye tensor of the same type as `x`. With shape same as `x`.
Outputs:
Tensor, data type same as input `x`. The shape should be x.shape[:-2] + [min(x.shape[-2:])].
Examples:
>>> x = Tensor([[[-1, 0], [0, 1]], [-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32)
>>> matrix_diag_part = P.MatrixDiagPart()
>>> result = matrix_diag_part(x, assist)
[[12., -9.], [8., -5.], [4., -1.]]
"""
@
prim_attr_register
def
__init__
(
self
):
"""init MatrixDiagPart"""
def
infer_dtype
(
self
,
x_dtype
,
assist_dtype
):
valid_type
=
[
mstype
.
float16
,
mstype
.
float32
,
mstype
.
int32
,
mstype
.
int8
,
mstype
.
uint8
]
args
=
{
"x"
:
x_dtype
,
"assist"
:
assist_dtype
}
validator
.
check_tensor_type_same
(
args
,
valid_type
,
self
.
name
)
return
x_dtype
def
infer_shape
(
self
,
x_shape
,
assist_shape
):
validator
.
check_integer
(
"x rank"
,
len
(
x_shape
),
2
,
Rel
.
GE
,
self
.
name
)
validator
.
check
(
"x shape"
,
x_shape
,
"assist shape"
,
assist_shape
,
Rel
.
EQ
,
self
.
name
)
if
assist_shape
[
-
2
]
<
assist_shape
[
-
1
]:
out_shape
=
assist_shape
[:
-
1
]
else
:
out_shape
=
assist_shape
[:
-
2
]
+
assist_shape
[
-
1
:]
return
out_shape
class
MatrixSetDiag
(
PrimitiveWithInfer
):
r
"""
Modify the batched diagonal part of a batched tensor.
Inputs:
- **x** (Tensor) - The batched tensor. It can be of the following data types:
float32, float16, int32, int8, uint8.
- **assist** (Tensor) - A eye tensor of the same type as `x`. With shape same as `x`.
- **diagonal** (Tensor) - The diagonal values.
Outputs:
Tensor, data type same as input `x`. The shape same as `x`.
Examples:
>>> x = Tensor([[[-1, 0], [0, 1]], [-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32)
>>> matrix_set_diag = P.MatrixSetDiag()
>>> result = matrix_set_diag(x, diagonal)
[[[-1, 0], [0, 2]], [-1, 0], [0, 1]], [[-1, 0], [0, 1]]]
"""
@
prim_attr_register
def
__init__
(
self
):
"""init MatrixSetDiag"""
def
infer_dtype
(
self
,
x_dtype
,
diagonal_dtype
,
assist_dtype
):
valid_type
=
[
mstype
.
float16
,
mstype
.
float32
,
mstype
.
int32
,
mstype
.
int8
,
mstype
.
uint8
]
args
=
{
"x"
:
x_dtype
,
"diagonal"
:
diagonal_dtype
,
"assist"
:
assist_dtype
}
validator
.
check_tensor_type_same
(
args
,
valid_type
,
self
.
name
)
return
x_dtype
def
infer_shape
(
self
,
x_shape
,
diagonal_shape
,
assist_shape
):
validator
.
check_integer
(
"x rank"
,
len
(
x_shape
),
2
,
Rel
.
GE
,
self
.
name
)
validator
.
check
(
"x shape"
,
x_shape
,
"assist shape"
,
assist_shape
,
Rel
.
EQ
,
self
.
name
)
if
x_shape
[
-
2
]
<
x_shape
[
-
1
]:
validator
.
check
(
"x shape excluding the last dimension"
,
x_shape
[:
-
1
],
"diagnoal shape"
,
diagonal_shape
,
Rel
.
EQ
,
self
.
name
)
else
:
validator
.
check
(
"x shape excluding the second to last dimension"
,
x_shape
[:
-
2
]
+
x_shape
[
-
1
:],
"diagonal shape"
,
diagonal_shape
,
Rel
.
EQ
,
self
.
name
)
return
assist_shape
tests/ut/python/ops/test_nn_ops.py
浏览文件 @
ac78ac97
...
@@ -370,6 +370,7 @@ def test_conv2d_same_primitive():
...
@@ -370,6 +370,7 @@ def test_conv2d_same_primitive():
super
(
Conv2DSameNet
,
self
).
__init__
()
super
(
Conv2DSameNet
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
16
,
64
,
(
1
,
41
),
(
1
,
4
),
"same"
,
0
,
1
,
has_bias
=
True
)
self
.
conv1
=
nn
.
Conv2d
(
16
,
64
,
(
1
,
41
),
(
1
,
4
),
"same"
,
0
,
1
,
has_bias
=
True
)
self
.
conv2
=
nn
.
Conv2d
(
16
,
64
,
(
1
,
41
),
(
1
,
4
),
"same"
,
0
,
1
,
has_bias
=
True
)
self
.
conv2
=
nn
.
Conv2d
(
16
,
64
,
(
1
,
41
),
(
1
,
4
),
"same"
,
0
,
1
,
has_bias
=
True
)
def
construct
(
self
,
x
,
y
):
def
construct
(
self
,
x
,
y
):
r1
=
self
.
conv1
(
x
)
r1
=
self
.
conv1
(
x
)
r2
=
self
.
conv2
(
y
)
r2
=
self
.
conv2
(
y
)
...
@@ -576,6 +577,22 @@ test_cases = [
...
@@ -576,6 +577,22 @@ test_cases = [
Tensor
(
np
.
ones
([
1
,
3
,
4
,
4
],
np
.
float32
)),
Tensor
(
np
.
ones
([
1
,
3
,
4
,
4
],
np
.
float32
)),
Tensor
(
np
.
ones
(
3
,
np
.
float32
))],
Tensor
(
np
.
ones
(
3
,
np
.
float32
))],
}),
}),
(
'MatrixDiag'
,
{
'block'
:
nn
.
MatrixDiag
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([
1
,
2
,
3
]).
astype
(
np
.
float32
))],
'skip'
:
[
'backward'
]
}),
(
'MatrixDiagPart'
,
{
'block'
:
nn
.
MatrixDiagPart
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]).
astype
(
np
.
float32
))],
'skip'
:
[
'backward'
]
}),
(
'MatrixSetDiag'
,
{
'block'
:
nn
.
MatrixSetDiag
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]).
astype
(
np
.
float32
)),
Tensor
(
np
.
array
([
1
,
2
]).
astype
(
np
.
float32
))],
'skip'
:
[
'backward'
]
}),
]
]
test_cases_for_verify_exception
=
[
test_cases_for_verify_exception
=
[
...
...
tests/ut/python/ops/test_ops.py
浏览文件 @
ac78ac97
...
@@ -1612,6 +1612,25 @@ test_case_array_ops = [
...
@@ -1612,6 +1612,25 @@ test_case_array_ops = [
Tensor
(
5
,
mstype
.
int32
)],
Tensor
(
5
,
mstype
.
int32
)],
'skip'
:
[
'backward'
],
'skip'
:
[
'backward'
],
}),
}),
(
'MatrixDiag'
,
{
'block'
:
inner
.
MatrixDiag
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([
1
,
-
1
]),
mstype
.
float32
),
Tensor
(
np
.
arange
(
-
12
,
0
).
reshape
(
3
,
2
,
2
),
mstype
.
float32
)],
'skip'
:
[
'backward'
],
}),
(
'MatrixDiagPart'
,
{
'block'
:
inner
.
MatrixDiagPart
(),
'desc_inputs'
:
[
Tensor
(
np
.
arange
(
12
).
reshape
(
3
,
2
,
2
),
mstype
.
float32
),
Tensor
(
np
.
arange
(
-
12
,
0
).
reshape
(
3
,
2
,
2
),
mstype
.
float32
)],
'skip'
:
[
'backward'
],
}),
(
'MatrixSetDiag'
,
{
'block'
:
inner
.
MatrixSetDiag
(),
'desc_inputs'
:
[
Tensor
(
np
.
arange
(
12
).
reshape
(
3
,
2
,
2
),
mstype
.
float32
),
Tensor
(
np
.
arange
(
6
).
reshape
(
3
,
2
),
mstype
.
float32
),
Tensor
(
np
.
arange
(
-
12
,
0
).
reshape
(
3
,
2
,
2
),
mstype
.
float32
)],
'skip'
:
[
'backward'
],
}),
]
]
test_case_other_ops
=
[
test_case_other_ops
=
[
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录