提交 aba52a45 编写于 作者: Z zhouyaqiang

modify readme for inceptrionv3

上级 b69b1ca8
# Inception-v3 Example # Contents
## Description - [InceptionV3 Description](#InceptionV3-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Features](#features)
- [Mixed Precision](#mixed-precision)
- [Environment Requirements](#environment-requirements)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Training Process](#training-process)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Training Performance](#evaluation-performance)
- [Inference Performance](#evaluation-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
This is an example of training Inception-v3 in MindSpore. # [InceptionV3 Description](#contents)
## Requirements InceptionV3 by Google is the 3rd version in a series of Deep Learning Convolutional Architectures.
- Install [Mindspore](http://www.mindspore.cn/install/en). [Paper](https://arxiv.org/pdf/1512.00567.pdf) Min Sun, Ali Farhadi, Steve Seitz. Ranking Domain-Specific Highlights by Analyzing Edited Videos[J]. 2014.
- Downlaod the dataset.
## Structure # [Model architecture](#contents)
The overall network architecture of InceptionV3 is show below:
[Link](https://arxiv.org/pdf/1905.02244)
# [Dataset](#contents)
Dataset used can refer to paper.
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Train: 120G, 1.2W images
- Test: 5G, 50000 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
# [Features](#contents)
## [Mixed Precision(Ascend)](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
# [Environment Requirements](#contents)
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# [Script description](#contents)
## [Script and sample code](#contents)
```shell ```shell
. .
└─Inception-v3 └─Inception-v3
├─README.md ├─README.md
├─scripts ├─scripts
├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
├─run_standalone_train_for_gpu.sh # launch standalone training with gpu platform(1p) ├─run_standalone_train_for_gpu.sh # launch standalone training with gpu platform(1p)
├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
├─run_distribute_train_for_gpu.sh # launch distributed training with gpu platform(8p) ├─run_distribute_train_for_gpu.sh # launch distributed training with gpu platform(8p)
├─run_eval.sh # launch evaluating with ascend platform
└─run_eval_for_gpu.sh # launch evaluating with gpu platform └─run_eval_for_gpu.sh # launch evaluating with gpu platform
├─src ├─src
├─config.py # parameter configuration ├─config.py # parameter configuration
...@@ -30,12 +84,10 @@ This is an example of training Inception-v3 in MindSpore. ...@@ -30,12 +84,10 @@ This is an example of training Inception-v3 in MindSpore.
└─train.py # train net └─train.py # train net
``` ```
## [Script Parameters](#contents)
## Parameter Configuration ```python
Major parameters in train.py and config.py are:
Parameters for both training and evaluating can be set in config.py
```
'random_seed': 1, # fix random seed 'random_seed': 1, # fix random seed
'rank': 0, # local rank of distributed 'rank': 0, # local rank of distributed
'group_size': 1, # world size of distributed 'group_size': 1, # world size of distributed
...@@ -59,14 +111,22 @@ Parameters for both training and evaluating can be set in config.py ...@@ -59,14 +111,22 @@ Parameters for both training and evaluating can be set in config.py
'is_save_on_master': 1 # save checkpoint on rank0, distributed parameters 'is_save_on_master': 1 # save checkpoint on rank0, distributed parameters
``` ```
## [Training process](#contents)
### Usage
## Running the example
### Train You can start training using python or shell scripts. The usage of shell scripts as follows:
#### Usage - Ascend:
```
# distribute training example(8p)
sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
# standalone training
sh run_standalone_train.sh DEVICE_ID DATA_PATH
```
- GPU:
``` ```
# distribute training example(8p) # distribute training example(8p)
sh run_distribute_train_for_gpu.sh DATA_DIR sh run_distribute_train_for_gpu.sh DATA_DIR
...@@ -74,42 +134,94 @@ sh run_distribute_train_for_gpu.sh DATA_DIR ...@@ -74,42 +134,94 @@ sh run_distribute_train_for_gpu.sh DATA_DIR
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_DIR sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_DIR
``` ```
#### Launch ### Launch
```
# training example
python:
Ascend: python train.py --dataset_path /dataset/train --platform Ascend
GPU: python train.py --dataset_path /dataset/train --platform GPU
```bash shell:
# distributed training example(8p) for GPU # distributed training example(8p) for GPU
sh scripts/run_distribute_train_for_gpu.sh /dataset/train sh scripts/run_distribute_train_for_gpu.sh /dataset/train
# standalone training example for GPU # standalone training example for GPU
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
``` ```
#### Result ### Result
You can find checkpoint file together with result in log. Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./log.txt` like followings.
### Evaluation ```
epoch: 0 step: 1251, loss is 5.7787247
Epoch time: 360760.985, per step time: 288.378
epoch: 1 step: 1251, loss is 4.392868
Epoch time: 160917.911, per step time: 128.631
```
## [Eval process](#contents)
#### Usage ### Usage
You can start training using python or shell scripts. The usage of shell scripts as follows:
- Ascend: sh run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
- GPU: sh run_eval_for_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
### Launch
```
# eval example
python:
Ascend: python eval.py --dataset_path DATA_DIR --checkpoint PATH_CHECKPOINT --platform Ascend
GPU: python eval.py --dataset_path DATA_DIR --checkpoint PATH_CHECKPOINT --platform GPU
shell:
Ascend: sh run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
GPU: sh run_eval_for_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
``` ```
# Evaluation
sh run_eval_for_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
```
#### Launch > checkpoint can be produced in training process.
### Result
```bash Evaluation result will be stored in the example path, you can find result like the followings in `log.txt`.
# Evaluation with checkpoint
sh scripts/run_eval_for_gpu.sh 0 /dataset/val ./checkpoint/inceptionv3-rank3-247_1251.ckpt ```
metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
``` ```
> checkpoint can be produced in training process. # [Model description](#contents)
## [Performance](#contents)
### Training Performance
| Parameters | InceptionV3 | |
| -------------------------- | ---------------------------------------------------------- | ------------------------- |
| Model Version | | |
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
| uploaded Date | 08/21/2020 | 08/21/2020 |
| MindSpore Version | 0.6.0-beta | 0.6.0-beta |
| Training Parameters | src/config.py | src/config.py |
| Optimizer | RMSProp | RMSProp |
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
| outputs | probability | probability |
| Loss | 1.98 | 1.98 |
| Accuracy | ACC1[78.8%] ACC5[94.2%] | ACC1[78.7%] ACC5[94.1%] |
| Total time | 11h | 72h |
| Params (M) | 103M | 103M |
| Checkpoint for Fine tuning | 313M | 312.41 |
| Model for inference | | |
#### Result #### Inference Performance
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log. To be added.
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
# [ModelZoo Homepage](#contents)
``` Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
acc=78.75%(TOP1) \ No newline at end of file
acc=94.07%(TOP5)
```
\ No newline at end of file
...@@ -64,7 +64,7 @@ config_ascend = edict({ ...@@ -64,7 +64,7 @@ config_ascend = edict({
'weight_decay': 0.00004, 'weight_decay': 0.00004,
'momentum': 0.9, 'momentum': 0.9,
'opt_eps': 1.0, 'opt_eps': 1.0,
'keep_checkpoint_max': 100, 'keep_checkpoint_max': 10,
'ckpt_path': './checkpoint/', 'ckpt_path': './checkpoint/',
'is_save_on_master': 0, 'is_save_on_master': 0,
'dropout_keep_prob': 0.8, 'dropout_keep_prob': 0.8,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册