Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
aa6f8086
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aa6f8086
编写于
4月 30, 2020
作者:
Y
YuJianfeng
提交者:
yujianfeng
5月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add batch norm bert fission pass
上级
2b319225
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
318 addition
and
0 deletion
+318
-0
mindspore/ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
.../ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
+2
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_bert_fission.cc
...pre_activate/ascend/ir_fission/batch_norm_bert_fission.cc
+170
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_bert_fission.h
.../pre_activate/ascend/ir_fission/batch_norm_bert_fission.h
+32
-0
mindspore/ccsrc/pre_activate/common/helper.h
mindspore/ccsrc/pre_activate/common/helper.h
+3
-0
mindspore/ccsrc/utils/utils.h
mindspore/ccsrc/utils/utils.h
+1
-0
tests/ut/cpp/pre_activate/ascend/ir_fission/batch_norm_bert_fission_test.cc
...ctivate/ascend/ir_fission/batch_norm_bert_fission_test.cc
+54
-0
tests/ut/cpp/python_input/gtest_input/pre_activate/batch_norm_bert_fission_test.py
.../gtest_input/pre_activate/batch_norm_bert_fission_test.py
+56
-0
未找到文件。
mindspore/ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
浏览文件 @
aa6f8086
...
...
@@ -20,6 +20,7 @@
#include "pre_activate/ascend/ir_fission/bn_split.h"
#include "pre_activate/ascend/ir_fission/bn_grad_split.h"
#include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h"
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include "pre_activate/ascend/ir_fusion/fused_batch_norm_fusion.h"
#include "pre_activate/ascend/ir_fission/layer_norm_grad_split.h"
#include "pre_activate/pass/communication_op_fusion.h"
...
...
@@ -76,6 +77,7 @@ namespace opt {
namespace
{
void
AddAscendBackendOptionalIRFusion
(
PassManager
*
ir_fusion_pm
)
{
MS_EXCEPTION_IF_NULL
(
ir_fusion_pm
);
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormBertFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SquareSumFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ClipByNormNoDivSquareSumFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambUpdateWithLRRuleFusion
>
());
...
...
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_bert_fission.cc
0 → 100644
浏览文件 @
aa6f8086
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include <vector>
#include <memory>
#include <algorithm>
#include "session/anf_runtime_algorithm.h"
#include "pre_activate/common/helper.h"
namespace
mindspore
{
namespace
opt
{
namespace
{
const
std
::
vector
<
int
>
kOutputIndex
{
0
,
3
,
4
,
5
};
constexpr
size_t
kBatchNormRealOutputNum
=
3
;
bool
CompareTupleGetitem
(
const
AnfNodePtr
&
n1
,
const
AnfNodePtr
&
n2
)
{
MS_EXCEPTION_IF_NULL
(
n1
);
MS_EXCEPTION_IF_NULL
(
n2
);
auto
n1_cnode
=
n1
->
cast
<
CNodePtr
>
();
auto
n2_cnode
=
n2
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
n1_cnode
);
MS_EXCEPTION_IF_NULL
(
n2_cnode
);
auto
index_input1
=
n1_cnode
->
input
(
kInputNodeOutputIndexInTupleGetItem
);
MS_EXCEPTION_IF_NULL
(
index_input1
);
auto
value_node1
=
index_input1
->
cast
<
ValueNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
value_node1
);
auto
index_input2
=
n2_cnode
->
input
(
kInputNodeOutputIndexInTupleGetItem
);
MS_EXCEPTION_IF_NULL
(
index_input2
);
auto
value_node2
=
index_input2
->
cast
<
ValueNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
value_node2
);
return
GetValue
<
int
>
(
value_node1
->
value
())
<
GetValue
<
int
>
(
value_node2
->
value
());
}
bool
GetBatchNormOutputs
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn
,
std
::
vector
<
AnfNodePtr
>
*
bn_outputs
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
bn_outputs
);
auto
manager
=
func_graph
->
manager
();
MS_EXCEPTION_IF_NULL
(
manager
);
if
(
manager
->
node_users
().
find
(
bn
)
==
manager
->
node_users
().
end
())
{
return
false
;
}
size_t
output_num
=
0
;
for
(
const
auto
&
node_index
:
manager
->
node_users
()[
bn
])
{
AnfNodePtr
output
=
node_index
.
first
;
MS_EXCEPTION_IF_NULL
(
output
);
auto
tuple_getiterm_cnode
=
output
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
tuple_getiterm_cnode
);
auto
index_node
=
tuple_getiterm_cnode
->
input
(
kInputNodeOutputIndexInTupleGetItem
);
MS_EXCEPTION_IF_NULL
(
index_node
);
auto
value_node
=
index_node
->
cast
<
ValueNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
value_node
);
int
index
=
GetValue
<
int
>
(
value_node
->
value
());
if
(
std
::
find
(
kOutputIndex
.
begin
(),
kOutputIndex
.
end
(),
index
)
==
kOutputIndex
.
end
())
{
return
false
;
}
bn_outputs
->
push_back
(
output
);
output_num
++
;
}
return
output_num
==
kBatchNormRealOutputNum
;
}
AnfNodePtr
CreateBNTrainingReduce
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
bn
);
auto
bn_cnode
=
bn
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
bn_cnode
);
CheckCNodeInputSize
(
bn_cnode
,
kBatchNormInputNum
+
1
);
std
::
vector
<
AnfNodePtr
>
bn_training_reduce_inputs
=
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
kBNTrainingReduceOpName
)),
bn_cnode
->
input
(
1
)};
auto
bn_training_reduce
=
func_graph
->
NewCNode
(
bn_training_reduce_inputs
);
MS_EXCEPTION_IF_NULL
(
bn_training_reduce
);
auto
bn_input1
=
bn_cnode
->
input
(
2
);
MS_EXCEPTION_IF_NULL
(
bn_input1
);
auto
bn_input2
=
bn_cnode
->
input
(
3
);
MS_EXCEPTION_IF_NULL
(
bn_input2
);
AbstractBasePtrList
abstract_list
{
bn_input1
->
abstract
(),
bn_input2
->
abstract
()};
auto
abstract_tuple
=
std
::
make_shared
<
abstract
::
AbstractTuple
>
(
abstract_list
);
bn_training_reduce
->
set_abstract
(
abstract_tuple
);
bn_training_reduce
->
set_scope
(
bn
->
scope
());
AnfAlgo
::
CopyNodeAttrs
(
bn
,
bn_training_reduce
);
return
bn_training_reduce
;
}
AnfNodePtr
CreateBNTrainingUpdateV2
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
bn
,
const
std
::
vector
<
AnfNodePtr
>
&
bn_training_reduce_outputs
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
bn
);
auto
bn_cnode
=
bn
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
bn_cnode
);
CheckCNodeInputSize
(
bn_cnode
,
kBatchNormInputNum
+
1
);
if
(
bn_training_reduce_outputs
.
size
()
!=
kBNTrainingReduceOutputNum
)
{
MS_LOG
(
EXCEPTION
)
<<
"The output size of node bn_training_reduce must be "
<<
kBNTrainingReduceOutputNum
<<
", but it is "
<<
bn_training_reduce_outputs
.
size
();
}
std
::
vector
<
AnfNodePtr
>
bn_training_update_v2_inputs
=
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
kBNTrainingUpdateV2OpName
)),
bn_cnode
->
input
(
1
),
bn_training_reduce_outputs
[
0
],
bn_training_reduce_outputs
[
1
],
bn_cnode
->
input
(
2
),
bn_cnode
->
input
(
3
)};
auto
bn_training_update_v2
=
func_graph
->
NewCNode
(
bn_training_update_v2_inputs
);
MS_EXCEPTION_IF_NULL
(
bn_training_update_v2
);
auto
bn_abstract_tuple
=
dyn_cast
<
abstract
::
AbstractTuple
>
(
bn
->
abstract
());
MS_EXCEPTION_IF_NULL
(
bn_abstract_tuple
);
if
(
bn_abstract_tuple
->
elements
().
size
()
!=
kBatchNormOutputNum
)
{
MS_LOG
(
EXCEPTION
)
<<
"The abstract size of node bn must be "
<<
kBatchNormOutputNum
<<
", but it is "
<<
bn_abstract_tuple
->
elements
().
size
();
}
std
::
vector
<
AbstractBasePtr
>
abstract_list
{
bn_abstract_tuple
->
elements
()[
0
],
bn_abstract_tuple
->
elements
()[
3
],
bn_abstract_tuple
->
elements
()[
4
]};
auto
abstract_tuple
=
std
::
make_shared
<
abstract
::
AbstractTuple
>
(
abstract_list
);
bn_training_update_v2
->
set_abstract
(
abstract_tuple
);
bn_training_update_v2
->
set_scope
(
bn
->
scope
());
AnfAlgo
::
CopyNodeAttrs
(
bn
,
bn_training_update_v2
);
return
bn_training_update_v2
;
}
}
// namespace
const
BaseRef
BatchNormBertFission
::
DefinePattern
()
const
{
VarPtr
Xs
=
std
::
make_shared
<
SeqVar
>
();
return
VectorRef
({
prim
::
kPrimBatchNorm
,
Xs
});
}
const
AnfNodePtr
BatchNormBertFission
::
Process
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
node
,
const
EquivPtr
&
)
const
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
std
::
vector
<
AnfNodePtr
>
bn_outputs
;
if
(
!
GetBatchNormOutputs
(
func_graph
,
node
,
&
bn_outputs
))
{
return
nullptr
;
}
AnfNodePtr
bn_training_reduce
=
CreateBNTrainingReduce
(
func_graph
,
node
);
std
::
vector
<
AnfNodePtr
>
bn_training_reduce_outputs
;
CreateMultipleOutputsOfAnfNode
(
func_graph
,
bn_training_reduce
,
kBNTrainingReduceOutputNum
,
&
bn_training_reduce_outputs
);
AnfNodePtr
bn_training_update_v2
=
CreateBNTrainingUpdateV2
(
func_graph
,
node
,
bn_training_reduce_outputs
);
std
::
vector
<
AnfNodePtr
>
bn_training_update_v2_outputs
;
CreateMultipleOutputsOfAnfNode
(
func_graph
,
bn_training_update_v2
,
kBNTrainingUpdateV2OutputNum
,
&
bn_training_update_v2_outputs
);
if
(
bn_training_update_v2_outputs
.
size
()
!=
kBNTrainingUpdateV2OutputNum
)
{
MS_LOG
(
EXCEPTION
)
<<
"The output size of node bn_training_reduce must be "
<<
kBNTrainingUpdateV2OutputNum
<<
", but it is "
<<
bn_training_update_v2_outputs
.
size
();
}
auto
manager
=
func_graph
->
manager
();
MS_EXCEPTION_IF_NULL
(
manager
);
sort
(
bn_outputs
.
begin
(),
bn_outputs
.
end
(),
CompareTupleGetitem
);
size_t
output_index
=
0
;
for
(
const
auto
&
output
:
bn_outputs
)
{
(
void
)
manager
->
Replace
(
output
,
bn_training_update_v2_outputs
[
output_index
]);
output_index
++
;
}
return
nullptr
;
}
}
// namespace opt
}
// namespace mindspore
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_bert_fission.h
0 → 100644
浏览文件 @
aa6f8086
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace
mindspore
{
namespace
opt
{
class
BatchNormBertFission
:
public
PatternProcessPass
{
public:
explicit
BatchNormBertFission
(
bool
multigraph
=
true
)
:
PatternProcessPass
(
"batch_norm_bert_fission"
,
multigraph
)
{}
~
BatchNormBertFission
()
override
=
default
;
const
BaseRef
DefinePattern
()
const
override
;
const
AnfNodePtr
Process
(
const
FuncGraphPtr
&
,
const
AnfNodePtr
&
,
const
EquivPtr
&
)
const
override
;
};
}
// namespace opt
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
mindspore/ccsrc/pre_activate/common/helper.h
浏览文件 @
aa6f8086
...
...
@@ -47,6 +47,8 @@ constexpr size_t kBn2ReluOutputNum = 4;
constexpr
size_t
kBnInputNum
=
6
;
constexpr
size_t
kBnOutputNum
=
5
;
constexpr
size_t
kBatchNormInputNum
=
5
;
constexpr
size_t
kBatchNormOutputNum
=
5
;
constexpr
size_t
kBN1OutputNum
=
2
;
constexpr
size_t
kBN2OutputNum
=
3
;
...
...
@@ -61,6 +63,7 @@ constexpr size_t kBNGrad3OutputNum = 1;
constexpr
size_t
kBNTrainingReduceOutputNum
=
2
;
constexpr
size_t
kBNTrainingUpdateOutputNum
=
5
;
constexpr
size_t
kBNTrainingUpdateV2OutputNum
=
3
;
constexpr
size_t
kBNTrainingUpdateGradOutputNum
=
2
;
constexpr
size_t
kSingleOutputNum
=
1
;
...
...
mindspore/ccsrc/utils/utils.h
浏览文件 @
aa6f8086
...
...
@@ -52,6 +52,7 @@ constexpr auto kTopKOpName = "TopK";
constexpr
auto
kExtractImagePatchesOpName
=
"ExtractImagePatches"
;
constexpr
auto
kBNTrainingReduceOpName
=
"BNTrainingReduce"
;
constexpr
auto
kBNTrainingUpdateOpName
=
"BNTrainingUpdate"
;
constexpr
auto
kBNTrainingUpdateV2OpName
=
"BNTrainingUpdateV2"
;
constexpr
auto
kSimpleMeanGradOpName
=
"SimpleMeanGrad"
;
constexpr
auto
kMeanGradOpName
=
"MeanGrad"
;
constexpr
auto
kSliceOpName
=
"Slice"
;
...
...
tests/ut/cpp/pre_activate/ascend/ir_fission/batch_norm_bert_fission_test.cc
0 → 100644
浏览文件 @
aa6f8086
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
namespace
mindspore
{
namespace
opt
{
class
TestHWBatchNormBertFission
:
public
BackendCommon
{
public:
TestHWBatchNormBertFission
()
:
get_py_fun_
(
"gtest_input.pre_activate.batch_norm_bert_fission_test"
,
true
)
{}
~
TestHWBatchNormBertFission
()
override
=
default
;
UT
::
PyFuncGraphFetcher
get_py_fun_
;
};
TEST_F
(
TestHWBatchNormBertFission
,
test_fused_batch_norm_fusion
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_batch_norm_bert_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp_x
{
32
,
64
,
112
,
112
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp_x
);
std
::
vector
<
int
>
shp_y
{
64
};
auto
y_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp_y
);
AbstractBasePtrList
args_spec_list
{
x_abstract
};
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
{
args_spec_list
.
push_back
(
y_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
pm
->
AddPass
(
std
::
make_shared
<
opt
::
BatchNormBertFission
>
());
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_batch_norm_bert_fission"
,
"after"
);
EXPECT_TRUE
(
CheckEqualGraph
(
g_after
,
new_graph
));
}
}
// namespace opt
}
// namespace mindspore
tests/ut/cpp/python_input/gtest_input/pre_activate/batch_norm_bert_fission_test.py
0 → 100644
浏览文件 @
aa6f8086
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
Primitive
make_tuple
=
Primitive
(
'make_tuple'
)
tuple_getitem
=
Primitive
(
'tuple_getitem'
)
BatchNorm
=
P
.
BatchNorm
()
BNTrainingReduce
=
Primitive
(
'BNTrainingReduce'
)
BNTrainingUpdateV2
=
Primitive
(
'BNTrainingUpdateV2'
)
class
FnDict
:
def
__init__
(
self
):
self
.
fnDict
=
{}
def
__call__
(
self
,
fn
):
self
.
fnDict
[
fn
.
__name__
]
=
fn
def
__getitem__
(
self
,
name
):
return
self
.
fnDict
[
name
]
def
test_batch_norm_bert_fission
(
tag
):
fns
=
FnDict
()
@
fns
def
before
(
input0
,
input1
,
input2
,
input3
,
input4
):
batch_norm
=
BatchNorm
(
input0
,
input1
,
input2
,
input3
,
input4
)
outputs
=
make_tuple
(
tuple_getitem
(
batch_norm
,
0
),
tuple_getitem
(
batch_norm
,
3
),
tuple_getitem
(
batch_norm
,
4
))
output
=
tuple_getitem
(
outputs
,
0
)
return
output
@
fns
def
after
(
input0
,
input1
,
input2
,
input3
,
input4
):
bn_training_reduce
=
BNTrainingReduce
(
input0
)
bn_training_update_v2
=
BNTrainingUpdateV2
(
input0
,
tuple_getitem
(
bn_training_reduce
,
0
),
tuple_getitem
(
bn_training_reduce
,
1
),
input1
,
input2
)
outputs
=
make_tuple
(
tuple_getitem
(
bn_training_update_v2
,
0
),
tuple_getitem
(
bn_training_update_v2
,
1
),
tuple_getitem
(
bn_training_update_v2
,
2
))
output
=
tuple_getitem
(
outputs
,
0
)
return
make_tuple
(
output
)
return
fns
[
tag
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录