Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a8fd71c7
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a8fd71c7
编写于
7月 23, 2020
作者:
W
wuyongkang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimization for BatchNorm
上级
e4c8365d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
41 addition
and
47 deletion
+41
-47
mindspore/nn/layer/normalization.py
mindspore/nn/layer/normalization.py
+41
-47
未找到文件。
mindspore/nn/layer/normalization.py
浏览文件 @
a8fd71c7
...
...
@@ -101,6 +101,9 @@ class _BatchNorm(Cell):
epsilon
=
self
.
eps
,
momentum
=
self
.
momentum
)
self
.
bn_infer
=
P
.
BatchNorm
(
is_training
=
False
,
epsilon
=
self
.
eps
)
self
.
enable_global_sync
=
self
.
is_global
and
(
self
.
is_ge_backend
or
(
self
.
is_graph_mode
and
self
.
is_ascend
))
self
.
enable_default_train
=
self
.
is_graph_mode
and
not
self
.
is_global
and
\
(
self
.
is_ge_backend
or
self
.
is_ascend
)
data_parallel_strategy
=
((
1
,),
(
1
,))
data_parallel_strategy_one
=
((
1
,),
())
...
...
@@ -147,51 +150,43 @@ class _BatchNorm(Cell):
return
y
def
construct
(
self
,
x
):
if
self
.
input_dims
==
'2d'
:
_shape_check
(
self
.
shape
(
x
))
if
self
.
input_dims
==
'1d'
:
_shape_check_2d
(
self
.
shape
(
x
))
if
self
.
input_dims
==
'both'
:
_shape_check_2d_or_4d
(
self
.
shape
(
x
))
_shape_check_bn
(
self
.
shape
(
x
),
self
.
input_dims
)
if
self
.
use_batch_statistics
is
None
:
flag
=
self
.
training
else
:
flag
=
self
.
use_batch_statistics
if
flag
:
if
self
.
is_ge_backend
and
self
.
is_global
:
if
self
.
enable_global_sync
:
axes
,
re_shape
=
_shape_infer
(
F
.
shape
(
x
),
self
.
num_features
)
y
=
self
.
_global_sync
(
x
,
axes
,
re_shape
)
elif
self
.
is_graph_mode
and
(
self
.
is_ge_backend
or
self
.
is_ascend
):
if
self
.
is_global
:
axes
,
re_shape
=
_shape_infer
(
F
.
shape
(
x
),
self
.
num_features
)
y
=
self
.
_global_sync
(
x
,
axes
,
re_shape
)
else
:
y
,
batch_mean
,
batch_var
,
_
,
_
=
\
self
.
bn_train
(
x
,
self
.
gamma
,
self
.
beta
,
None
,
None
)
mean_sub
=
self
.
sub_mean
(
self
.
moving_mean
,
batch_mean
)
temp_mean
=
self
.
mul_mean
(
mean_sub
,
self
.
momentum
)
mean_sub2
=
self
.
sub_var
(
self
.
moving_variance
,
batch_var
)
temp_variance
=
self
.
mul_var
(
mean_sub2
,
self
.
momentum
)
y
=
F
.
depend
(
y
,
self
.
assign_sub_mean
(
self
.
moving_mean
,
temp_mean
))
y
=
F
.
depend
(
y
,
self
.
assign_sub_var
(
self
.
moving_variance
,
temp_variance
))
else
:
y
=
self
.
bn_train
(
x
,
self
.
gamma
,
self
.
beta
,
self
.
moving_mean
,
self
.
moving_variance
)[
0
]
else
:
y
=
self
.
bn_infer
(
x
,
self
.
gamma
,
self
.
beta
,
self
.
moving_mean
,
self
.
moving_variance
)[
0
]
return
y
return
self
.
_global_sync
(
x
,
axes
,
re_shape
)
if
self
.
enable_default_train
:
y
,
batch_mean
,
batch_var
,
_
,
_
=
self
.
bn_train
(
x
,
self
.
gamma
,
self
.
beta
,
None
,
None
)
mean_sub
=
self
.
sub_mean
(
self
.
moving_mean
,
batch_mean
)
temp_mean
=
self
.
mul_mean
(
mean_sub
,
self
.
momentum
)
mean_sub2
=
self
.
sub_var
(
self
.
moving_variance
,
batch_var
)
temp_variance
=
self
.
mul_var
(
mean_sub2
,
self
.
momentum
)
y
=
F
.
depend
(
y
,
self
.
assign_sub_mean
(
self
.
moving_mean
,
temp_mean
))
y
=
F
.
depend
(
y
,
self
.
assign_sub_var
(
self
.
moving_variance
,
temp_variance
))
return
y
return
self
.
bn_train
(
x
,
self
.
gamma
,
self
.
beta
,
self
.
moving_mean
,
self
.
moving_variance
)[
0
]
return
self
.
bn_infer
(
x
,
self
.
gamma
,
self
.
beta
,
self
.
moving_mean
,
self
.
moving_variance
)[
0
]
def
extend_repr
(
self
):
return
'num_features={}, eps={}, momentum={}, gamma={}, beta={}, moving_mean={}, moving_variance={}'
.
format
(
...
...
@@ -204,12 +199,6 @@ def _channel_check(channel, num_channel):
raise
ValueError
(
"the input channel is not equal with num_channel"
)
@
constexpr
def
_shape_check_2d
(
input_shape
):
if
len
(
input_shape
)
!=
2
:
raise
ValueError
(
"The input must has 2 dims."
)
@
constexpr
def
_shape_check
(
in_shape
):
if
len
(
in_shape
)
!=
4
:
...
...
@@ -217,8 +206,13 @@ def _shape_check(in_shape):
@
constexpr
def
_shape_check_2d_or_4d
(
in_shape
):
if
len
(
in_shape
)
!=
2
and
len
(
in_shape
)
!=
4
:
def
_shape_check_bn
(
in_shape
,
in_dims
):
dim
=
len
(
in_shape
)
if
in_dims
==
'1d'
and
dim
!=
2
:
raise
ValueError
(
"The input must has 2 dims."
)
if
in_dims
==
'2d'
and
dim
!=
4
:
raise
ValueError
(
"The input must has 4 dims."
)
if
in_dims
==
'both'
and
dim
!=
2
and
dim
!=
4
:
raise
ValueError
(
"The input must has 2 dims or 4 dims."
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录