提交 a5851778 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!5575 update run for br: r0.7

Merge pull request !5575 from guozhijian/udpate_run_from_c75b100_to_c75b150
graphengine @ cb39cb2b
Subproject commit 622af6c1c50034bea5a08bd409c5a410782bfe53
Subproject commit cb39cb2ba7c9afb27373ad9e81f563ff9ddb9fcc
......@@ -20,6 +20,8 @@
#include <vector>
#include <memory>
#include <algorithm>
#include <map>
#include <climits>
#include "runtime/device/kernel_runtime.h"
#include "backend/kernel_compiler/aicpu/aicpu_kernel_mod.h"
#include "backend/kernel_compiler/akg/akg_kernel_build.h"
......@@ -218,7 +220,7 @@ void SetNodeInputs(const std::shared_ptr<AnfNode> &anf_node, mindspore::NodeDef
mindspore::TensorShape_Dim *dim = tensorShape->add_dim();
dim->set_size((::google::protobuf::int64)item);
}
node_inputs->set_tensor_type((mindspore::DataType)input_data_type);
node_inputs->set_tensor_type(input_data_type);
node_inputs->set_mem_device("HBM");
}
}
......@@ -245,7 +247,7 @@ void SetNodeOutputs(const std::shared_ptr<AnfNode> &anf_node, mindspore::NodeDef
}
TypeId output_type = AnfAlgo::GetOutputDeviceDataType(anf_node, output_index);
int32_t output_data_type = AicpuOpUtil::MsTypeToProtoType(output_type);
node_outputs->set_tensor_type((mindspore::DataType)output_data_type);
node_outputs->set_tensor_type(output_data_type);
node_outputs->set_mem_device("HBM");
}
}
......@@ -287,6 +289,109 @@ bool CreateNodeDefBytes(const std::shared_ptr<AnfNode> &anf_node,
return true;
}
bool CreateExtInfo(const std::shared_ptr<AnfNode> &anf_node, const std::shared_ptr<AicpuOpKernelMod> &kernel_mod_ptr) {
if (!anf_node->isa<CNode>()) {
return true;
}
if (!AnfAlgo::IsDynamicShape(anf_node)) {
return true;
}
MS_LOG(INFO) << "CreateExtInfo start, " << anf_node->fullname_with_scope();
int32_t unknown_shape_type = UnknowShapeOpType::DEPEND_COMPUTE;
uint64_t ext_info_head_len = kExtInfoHeadSize;
std::string ext_info;
size_t input_num = AnfAlgo::GetInputTensorNum(anf_node);
size_t output_num = AnfAlgo::GetOutputTensorNum(anf_node);
// 1.addr:unknown shape type
uint64_t ext_info_len = ext_info.size();
ext_info_len += ext_info_head_len + sizeof(int32_t);
// 2.addr:input ShapeAndType
ext_info_len += ext_info_head_len + input_num * sizeof(ShapeAndType);
// 3.addr:output ShapeAndType
ext_info_len += ext_info_head_len + output_num * sizeof(ShapeAndType);
uint64_t ext_info_offset = ext_info.size();
ext_info.resize(ext_info_len, 0);
char *ext_info_buf = ext_info.data();
// deal1: unknown shape type
ExtInfo *info = reinterpret_cast<ExtInfo *>(ext_info_buf + ext_info_offset);
info->infoType = FWK_ADPT_EXT_SHAPE_TYPE;
info->infoLen = sizeof(int32_t);
ext_info_offset += ext_info_head_len;
int32_t *shape_type = reinterpret_cast<int32_t *>(ext_info_buf + ext_info_offset);
*shape_type = unknown_shape_type;
ext_info_offset += info->infoLen;
// deal2:input ShapeAndType
info = reinterpret_cast<ExtInfo *>(ext_info_buf + ext_info_offset);
info->infoType = FWK_ADPT_EXT_INPUT_SHAPE;
info->infoLen = input_num * sizeof(ShapeAndType);
ext_info_offset += ext_info_head_len;
ShapeAndType *inputs = reinterpret_cast<ShapeAndType *>(ext_info_buf + ext_info_offset);
for (size_t input_index = 0; input_index < input_num; input_index++) {
TypeId input_type = AnfAlgo::GetInputDeviceDataType(anf_node, input_index);
std::vector<size_t> input_shape;
int32_t input_data_type;
if (input_type == kObjectTypeString) {
auto cnode = anf_node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
auto input_node = cnode->inputs()[input_index + 1];
auto value_ptr = GetValueNode(input_node);
auto value = GetValue<std::string>(value_ptr);
input_shape.push_back(1);
input_shape.push_back(value.size());
input_data_type = AicpuOpUtil::MsTypeToProtoType(kTypeUnknown);
} else {
input_shape = AnfAlgo::GetInputDeviceShape(anf_node, input_index);
input_data_type = AicpuOpUtil::MsTypeToProtoType(input_type);
}
inputs[input_index].type = input_data_type;
size_t input_shape_index = 0;
for (; input_shape_index < input_shape.size(); input_shape_index++) {
inputs[input_index].dims[input_shape_index] = SizeToLong(input_shape[input_shape_index]);
}
if (input_shape.size() < kMaxShapeDims) {
inputs[input_index].dims[input_shape_index] = LLONG_MIN;
}
}
ext_info_offset += info->infoLen;
// deal3:output ShapeAndType
info = reinterpret_cast<ExtInfo *>(ext_info_buf + ext_info_offset);
info->infoType = FWK_ADPT_EXT_OUTPUT_SHAPE;
info->infoLen = output_num * sizeof(ShapeAndType);
ext_info_offset += ext_info_head_len;
ShapeAndType *outputs = reinterpret_cast<ShapeAndType *>(ext_info_buf + ext_info_offset);
for (size_t output_index = 0; output_index < output_num; output_index++) {
std::vector<size_t> output_shape = AnfAlgo::GetOutputDeviceShape(anf_node, output_index);
TypeId output_type = AnfAlgo::GetOutputDeviceDataType(anf_node, output_index);
int32_t output_data_type = AicpuOpUtil::MsTypeToProtoType(output_type);
outputs[output_index].type = output_data_type;
size_t output_shape_index = 0;
for (; output_shape_index < output_shape.size(); output_shape_index++) {
outputs[output_index].dims[output_shape_index] = SizeToLong(output_shape[output_shape_index]);
}
if (output_shape_index < kMaxShapeDims) {
outputs[output_index].dims[output_shape_index] = LLONG_MIN;
}
}
// set ext info
kernel_mod_ptr->SetExtInfo(ext_info);
return true;
}
KernelModPtr AicpuOpBuild(const std::shared_ptr<AnfNode> &anf_node) {
MS_EXCEPTION_IF_NULL(anf_node);
std::string op_name = AnfAlgo::GetCNodeName(anf_node);
......@@ -300,6 +405,11 @@ KernelModPtr AicpuOpBuild(const std::shared_ptr<AnfNode> &anf_node) {
if (!CreateNodeDefBytes(anf_node, kernel_mod_ptr)) {
MS_LOG(EXCEPTION) << "Create nodeDefBytes faild!";
}
if (!CreateExtInfo(anf_node, kernel_mod_ptr)) {
MS_LOG(EXCEPTION) << "Create nodeDefBytes faild!";
}
if (!SetIOSize(anf_node, kernel_mod_ptr)) {
MS_LOG(EXCEPTION) << "Set input output size list failed.";
}
......
......@@ -43,6 +43,7 @@ AicpuOpKernelMod::~AicpuOpKernelMod() {
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
ext_info_.clear();
}
void AicpuOpKernelMod::SetInputSizeList(const std::vector<size_t> &size_list) { input_size_list_ = size_list; }
......@@ -54,6 +55,7 @@ const std::vector<size_t> &AicpuOpKernelMod::GetWorkspaceSizeList() const { retu
void AicpuOpKernelMod::SetInputList(const std::vector<int64_t> &inputList) { inputList_ = inputList; }
void AicpuOpKernelMod::SetOutputList(const std::vector<int64_t> &outputList) { outputList_ = outputList; }
void AicpuOpKernelMod::SetNodeDef(const std::string &nodeDef) { (void)node_def_str_.assign(nodeDef); }
void AicpuOpKernelMod::SetExtInfo(const std::string &ext_info) { ext_info_ = ext_info; }
void AicpuOpKernelMod::SetNodeName(const std::string &node_name) { node_name_ = node_name; }
void AicpuOpKernelMod::SetAnfNode(const mindspore::AnfNodePtr &anf_node) {
MS_EXCEPTION_IF_NULL(anf_node);
......@@ -84,16 +86,30 @@ void AicpuOpKernelMod::CreateCpuKernelInfo(const std::vector<AddressPtr> &inputs
auto node_def_len = node_def_str_.length();
param_len += node_def_len;
param_len += sizeof(uint32_t);
AicpuParamHead aicpu_param_head;
aicpu_param_head.length = param_len;
aicpu_param_head.ioAddrNum = io_addrs_num;
if (ext_info_.empty()) {
MS_LOG(INFO) << "Static Shape Kernel";
aicpu_param_head.extInfoLength = 0;
aicpu_param_head.extInfoAddr = 0;
} else {
MS_LOG(INFO) << "Dynamic Kernel Ext Info size:" << ext_info_.size();
}
// Create taskArgs: AicpuParamHead + ioAddrs + notifyId + customizedAttr
AicpuParamHead paramHead = {static_cast<uint32_t>(param_len), static_cast<uint32_t>(io_addrs_num)};
args_.clear();
(void)args_.append(reinterpret_cast<const char *>(&paramHead), sizeof(AicpuParamHead));
(void)args_.append(reinterpret_cast<const char *>(&aicpu_param_head), sizeof(AicpuParamHead));
// TaskArgs append ioAddrs
if (io_addrs_size != 0) {
(void)args_.append(reinterpret_cast<const char *>(io_addrs.data()), io_addrs_size);
}
// size for node_def
args_.append(reinterpret_cast<const char *>(&node_def_len), sizeof(uint32_t));
// When it's aicpu customized ops, taskArgs should append customized attr
if (node_def_len != 0) {
(void)args_.append(reinterpret_cast<const char *>(node_def_str_.data()), node_def_len);
......@@ -145,8 +161,9 @@ std::vector<TaskInfoPtr> AicpuOpKernelMod::GenTask(const std::vector<AddressPtr>
node_name_ = kTopKV2;
}
AicpuTaskInfoPtr task_info_ptr = make_shared<ge::model_runner::AicpuTaskInfo>(
kernel_name_, stream_id, node_so_, node_name_, node_def_str_, input_data_addrs, output_data_addrs, NeedDump());
AicpuTaskInfoPtr task_info_ptr =
make_shared<ge::model_runner::AicpuTaskInfo>(kernel_name_, stream_id, node_so_, node_name_, node_def_str_,
ext_info_, input_data_addrs, output_data_addrs, NeedDump());
MS_LOG(INFO) << "AicpuOpKernelMod GenTask end";
return {task_info_ptr};
......
......@@ -36,6 +36,7 @@ class AicpuOpKernelMod : public AscendKernelMod {
void SetOutputList(const std::vector<int64_t> &outputList);
void SetAnfNode(const AnfNodePtr &anf_node);
void SetNodeDef(const std::string &nodeDef);
void SetExtInfo(const std::string &ext_info);
void SetNodeName(const std::string &node_name);
/**
......@@ -58,6 +59,7 @@ class AicpuOpKernelMod : public AscendKernelMod {
std::string node_def_str_;
std::string node_name_;
std::string node_so_;
std::string ext_info_;
std::vector<int64_t> inputList_;
std::vector<int64_t> outputList_;
AnfNodePtr anf_node_;
......
......@@ -21,7 +21,6 @@
#include <map>
#include <string>
#include "backend/kernel_compiler/kernel.h"
namespace mindspore {
namespace kernel {
constexpr auto kInitDataSetQueue = "InitDataSetQueue";
......@@ -50,6 +49,36 @@ struct AicpuParamHead {
uint64_t extInfoAddr; // extInfo address
} __attribute__((packed));
const uint32_t kExtInfoHeadSize = 8;
struct ExtInfo {
int32_t infoType; // extend type
uint32_t infoLen; // length for infoMsg
char infoMsg[0]; // extend value
} __attribute__((packed));
// Extent info ShapeAndType
const uint32_t kMaxShapeDims = 8;
struct ShapeAndType {
int32_t type;
int64_t dims[kMaxShapeDims];
} __attribute__((packed));
// Extend Info type for task
enum FWKTaskExtInfoType {
FWK_ADPT_EXT_SHAPE_TYPE = 0,
FWK_ADPT_EXT_INPUT_SHAPE,
FWK_ADPT_EXT_OUTPUT_SHAPE,
FWK_ADPT_EXT_INVALID
};
// for unknown shape op type
enum UnknowShapeOpType {
DEPEND_IN_SHAPE = 1, // op out shape get by input shape
DEPEND_CONST_VALUE = 2, // op out shape get by const op value
DEPEND_SHAPE_RANGE = 3, // op out shape get by range
DEPEND_COMPUTE = 4 // op out shape get by totally computing
};
class AicpuOpUtil {
public:
static int MsTypeToProtoType(TypeId ms_type);
......
......@@ -26,7 +26,7 @@ message AttrValue {
repeated int64 i = 3 [ packed = true ]; //"array(int)"
repeated float f = 4 [ packed = true ]; //"array(float)"
repeated bool b = 5 [ packed = true ]; //"array(bool)"
repeated DataType type = 6 [ packed = true ]; //"array(type)"
repeated int32 type = 6 [ packed = true ]; //"array(type)"
repeated TensorShape shape = 7; //"array(shape)"
repeated Tensor tensor = 8; //"array(tensor)"
}
......
......@@ -18,9 +18,16 @@ package mindspore;
import "attr.proto";
import "tensor.proto";
message DynamicIdx {
int32 idx = 1;
int32 num = 2;
}
message NodeDef {
string op = 2;
map<string, AttrValue> attrs = 3;
repeated Tensor inputs = 4;
repeated Tensor outputs = 5;
map<string, DynamicIdx> dym_inputs = 6;
map<string, DynamicIdx> dym_outputs = 7;
}
......@@ -26,9 +26,12 @@ message Tensor {
TensorShape tensor_shape = 1;
// tensor content data type
DataType tensor_type = 2;
int32 tensor_type = 2;
// tensor memory device
// data located memory device , "DDR" "HBM" OR "NONE"
string mem_device = 3;
string name = 4;
uint64 data_ptr = 5;
uint64 data_size = 6;
}
......@@ -31,5 +31,5 @@ message TensorShape {
bool unknown_rank = 3;
// data format "NHWC" "NCHW" "NC1HWC0" OR "NONE"
string data_format = 4;
int32 data_format = 4;
};
......@@ -19,17 +19,30 @@ option cc_enable_arenas = true;
package mindspore;
enum DataType {
MS_UNKNOWN = 0;
MS_BOOL = 1;
MS_FLOAT32 = 0;
MS_FLOAT16 = 1;
MS_INT8 = 2;
MS_UINT8 = 3;
MS_INT16 = 4;
MS_UINT16 = 5;
MS_INT32 = 6;
MS_UINT32 = 7;
MS_INT64 = 8;
MS_UINT64 = 9;
MS_FLOAT16 = 10;
MS_FLOAT32 = 11;
MS_FLOAT64 = 12;
MS_INT32 = 3;
MS_UINT8 = 4;
MS_INT16 = 6;
MS_UINT16 = 7;
MS_UINT32 = 8;
MS_INT64 = 9;
MS_UINT64 = 10;
MS_FLOAT64 = 11;
MS_BOOL = 12;
MS_STRING = 13;
MS_DUAL_SUB_INT8 = 14;
MS_DUAL_SUB_UINT8 = 15;
MS_COMPLEX64 = 16;
MS_COMPLEX128 = 17;
MS_QINT8 = 18;
MS_QINT16 = 19;
MS_QINT32 = 20;
MS_QUINT8 = 21;
MS_QUINT16 = 22;
MS_RESOURCE = 23;
MS_STRING_REF = 24;
MS_DUAL = 25;
MS_UNKNOWN = 26;
}
......@@ -1197,6 +1197,19 @@ TypeId AnfRuntimeAlgorithm::GetPrevNodeOutputPrecision(const AnfNodePtr &node, s
return GetCNodeOutputPrecision(kernel_with_index.first);
}
bool AnfRuntimeAlgorithm::IsDynamicShape(const AnfNodePtr &node) {
if (!node->isa<CNode>()) {
return false;
}
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
auto has_attr = AnfAlgo::HasNodeAttr(kAttrIsDynamicShape, cnode);
if (!has_attr) {
return false;
}
return AnfAlgo::GetNodeAttr<bool>(node, kAttrIsDynamicShape);
}
bool AnfRuntimeAlgorithm::IsCondControlKernel(const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(node);
if (node->inputs().empty()) {
......
......@@ -217,6 +217,7 @@ class AnfRuntimeAlgorithm {
static TypeId GetCNodeOutputPrecision(const AnfNodePtr &node);
// get fix output precision from prev node, input_idx is the input index of current node related to prev node.
static TypeId GetPrevNodeOutputPrecision(const AnfNodePtr &node, size_t input_idx);
static bool IsDynamicShape(const AnfNodePtr &node);
static bool IsCondControlKernel(const CNodePtr &node);
static bool IsIndependentNode(const CNodePtr &node);
};
......
......@@ -269,6 +269,7 @@ constexpr auto kAttrPadDimSize = "pad_dim_size";
constexpr auto kAttrNumSegments = "num_segments";
constexpr auto kAttrBegin = "begin";
constexpr auto kAttrSize = "size";
constexpr auto kAttrIsDynamicShape = "is_dynamic_shape";
// attr value
constexpr auto kValueTargetSwitch = "target_switch";
......
......@@ -13,6 +13,7 @@
# limitations under the License.
"""aicpu ops"""
from .unique import _unique_aicpu
from .init_data_set_queue import _init_data_set_queue_aicpu
from .embedding_lookup import _embedding_lookup_aicpu
from .padding import _padding_aicpu
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Unique op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
unique_op_info = AiCPURegOp("Unique") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.output(0, "y", "required") \
.output(1, "idx", "required") \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
.get_op_info()
@op_info_register(unique_op_info)
def _unique_aicpu():
"""Unique AiCPU register"""
return
......@@ -91,6 +91,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
from .sparse_ops import SparseToDense
__all__ = [
'Unique',
'ReverseSequence',
'EditDistance',
'CropAndResize',
......
......@@ -569,9 +569,9 @@ class Unique(Primitive):
containing indices of elements in the input coressponding to the output tensor.
Examples:
>>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.float32)
>>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32)
>>> out = P.Unique()(x)
(Tensor([1, 2, 5], mindspore.int32), Tensor([0, 1, 2, 1], mindspore.float32))
(Tensor([1, 2, 5], mindspore.int32), Tensor([0, 1, 2, 1], mindspore.int32))
"""
@prim_attr_register
def __init__(self):
......
......@@ -367,7 +367,8 @@ def test_resnet_and_resnet_thor_imagenet_4p():
os.system("rm -rf " + str(i))
print("End training...")
assert acc > 0.15
assert cost < 20
# the original perf is: 20 in C75B100
assert cost < 22
# THOR
thor_acc = 0.0
......@@ -383,4 +384,5 @@ def test_resnet_and_resnet_thor_imagenet_4p():
os.system("rm -rf " + str(i))
print("End training...")
assert thor_acc > 0.22
assert thor_cost < 21
# the original perf is: 21 in C75B100
assert thor_cost < 23
......@@ -35,39 +35,5 @@ StatusFactory::StatusFactory() {}
std::mutex& StatusFactory::GetMutex() { return GetInstance()->rwMutex_; }
TsdClient* TsdClient::GetInstance() {
static TsdClient instance;
return &instance;
}
/**
* @ingroup TsdClient
* @brief 构造函数
*/
TsdClient::TsdClient() { rankSize_ = 1; }
/**
* @ingroup TsdClient
* @brief 析构函数
*/
TsdClient::~TsdClient() = default;
/**
* @ingroup TsdClient
* @brief framework发送拉起hccp和computer process的命令
* @param [in] phyDeviceId : FMK传入物理ID
* @param [in] phyDeviceId : FMK传入rankSize
* @return TDT_OK:成功 或者其他错误码
*/
TDT_StatusT TsdClient::Open(const uint32_t deviceId, const uint32_t rankSize) { return TDT_OK; }
/**
* @ingroup TsdClient
* @brief 通知TsdClient关闭相关资源
* @param 无
* @return TDT_OK:成功 或者其他错误码
*/
TDT_StatusT TsdClient::Close() { return TDT_OK; }
} // namespace tdt
#endif // TDT_MOCK_H
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册