Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a3e7b304
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3e7b304
编写于
6月 20, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 20, 2020
浏览文件
操作
浏览文件
下载
差异文件
!2384 Add split fission pass
Merge pull request !2384 from YuJianfeng/split
上级
c19c512d
7ad877a9
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
352 addition
and
0 deletion
+352
-0
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
+1
-0
mindspore/ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
.../ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
+3
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/split_fission.cc
...ore/ccsrc/pre_activate/ascend/ir_fission/split_fission.cc
+191
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/split_fission.h
...pore/ccsrc/pre_activate/ascend/ir_fission/split_fission.h
+37
-0
mindspore/ccsrc/pre_activate/common/helper.h
mindspore/ccsrc/pre_activate/common/helper.h
+1
-0
mindspore/ccsrc/utils/utils.h
mindspore/ccsrc/utils/utils.h
+5
-0
tests/ut/cpp/pre_activate/ascend/ir_fission/split_fission_test.cc
.../cpp/pre_activate/ascend/ir_fission/split_fission_test.cc
+56
-0
tests/ut/cpp/python_input/gtest_input/pre_activate/split_fission_test.py
...thon_input/gtest_input/pre_activate/split_fission_test.py
+58
-0
未找到文件。
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
浏览文件 @
a3e7b304
...
...
@@ -90,6 +90,7 @@ static std::map<string, string> tbe_func_adapter_map = {
{
"lamb_next_mv_with_decay"
,
"lamb_next_m_v_with_decay"
},
{
"lamb_next_mv"
,
"lamb_next_m_v"
},
{
"split"
,
"split_d"
},
{
"split_v"
,
"split_v_d"
},
{
"resize_nearest_neighbor"
,
"resize_nearest_neighbor_v2_d"
},
{
"resize_nearest_neighbor_grad"
,
"resize_nearest_neighbor_v2_grad_d"
},
{
"pad"
,
"pad_d"
},
...
...
mindspore/ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
浏览文件 @
a3e7b304
...
...
@@ -87,6 +87,7 @@
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#include "pre_activate/ascend/enhancer/insert_memcpy_async_for_getnext.h"
#include "pre_activate/ascend/ir_fission/batch_norm_grad_infer_fission.h"
#include "pre_activate/ascend/ir_fission/split_fission.h"
#include "utils/context/ms_context.h"
#include "utils/config_manager.h"
#include "debug/anf_ir_dump.h"
...
...
@@ -141,6 +142,8 @@ void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNorm2BNInfer
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormGrad2BNInferGrad
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormGradInferFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SplitFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
GetitemTuple
>
());
}
}
// namespace
...
...
mindspore/ccsrc/pre_activate/ascend/ir_fission/split_fission.cc
0 → 100644
浏览文件 @
a3e7b304
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/split_fission.h"
#include <memory>
#include <vector>
#include "session/anf_runtime_algorithm.h"
namespace
mindspore
{
namespace
opt
{
namespace
{
CNodePtr
CreateSplitVNode
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
input_node
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
input_node
);
std
::
vector
<
AnfNodePtr
>
splitv_inputs
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
kSplitVOpName
)),
input_node
};
CNodePtr
splitv
=
func_graph
->
NewCNode
(
splitv_inputs
);
MS_EXCEPTION_IF_NULL
(
splitv
);
splitv
->
set_scope
(
input_node
->
scope
());
return
splitv
;
}
CNodePtr
CreateBaseSplitVNode
(
const
FuncGraphPtr
&
func_graph
,
const
CNodePtr
&
origin_cnode
)
{
MS_EXCEPTION_IF_NULL
(
origin_cnode
);
if
(
origin_cnode
->
inputs
().
size
()
<
kSplitInputNum
)
{
MS_LOG
(
EXCEPTION
)
<<
"The input number of split: "
<<
origin_cnode
->
DebugString
()
<<
" should be "
<<
kSplitInputNum
-
1
;
}
return
CreateSplitVNode
(
func_graph
,
origin_cnode
->
input
(
1
));
}
void
SetAttrForSplitVNode
(
const
AnfNodePtr
&
splitv
,
const
std
::
vector
<
int
>
&
size_splits
,
int
split_dim
,
int
num_split
)
{
AnfAlgo
::
SetNodeAttr
(
kAttrSizeSplits
,
MakeValue
(
size_splits
),
splitv
);
AnfAlgo
::
SetNodeAttr
(
kAttrSplitDim
,
MakeValue
(
split_dim
),
splitv
);
AnfAlgo
::
SetNodeAttr
(
kAttrNumSplit
,
MakeValue
(
num_split
),
splitv
);
}
size_t
GetSmallSplitSize
(
const
AnfNodePtr
&
split_node
,
int
split_dim
,
int
num_split
)
{
auto
input_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
split_node
,
0
);
if
(
split_dim
<
0
)
{
split_dim
+=
input_shape
.
size
();
}
if
(
IntToSize
(
split_dim
)
>=
input_shape
.
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"The split_dim value should be less than the shape size of input 0"
;
}
return
input_shape
[
split_dim
]
/
num_split
;
}
void
AddNewOutputs
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
new_splitv
,
int
outputs_num
,
std
::
vector
<
AnfNodePtr
>
*
inputs
)
{
MS_EXCEPTION_IF_NULL
(
inputs
);
std
::
vector
<
AnfNodePtr
>
new_splitv_output
;
CreateMultipleOutputsOfAnfNode
(
func_graph
,
new_splitv
,
outputs_num
,
&
new_splitv_output
);
inputs
->
insert
(
inputs
->
end
(),
new_splitv_output
.
begin
(),
new_splitv_output
.
end
());
}
AnfNodePtr
CreateTupleGetItem
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
input
,
size_t
index
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
auto
idx
=
NewValueNode
(
SizeToInt
(
index
));
MS_EXCEPTION_IF_NULL
(
idx
);
auto
imm
=
std
::
make_shared
<
Int32Imm
>
(
SizeToInt
(
index
));
auto
abstract_scalar
=
std
::
make_shared
<
abstract
::
AbstractScalar
>
(
imm
);
idx
->
set_abstract
(
abstract_scalar
);
auto
tuple_getitem
=
func_graph
->
NewCNode
({
NewValueNode
(
prim
::
kPrimTupleGetItem
),
input
,
idx
});
return
tuple_getitem
;
}
void
CreateOutputShapeAndTypeId
(
const
CNodePtr
&
origin_cnode
,
int
split_dim
,
int
split_size
,
int
num_split
,
std
::
vector
<
TypeId
>
*
new_type_ids
,
std
::
vector
<
std
::
vector
<
size_t
>>
*
new_output_shapes
)
{
MS_EXCEPTION_IF_NULL
(
new_type_ids
);
MS_EXCEPTION_IF_NULL
(
new_output_shapes
);
auto
output_shape
=
AnfAlgo
::
GetOutputInferShape
(
origin_cnode
,
0
);
output_shape
[
split_dim
]
=
split_size
;
TypeId
type_id
=
AnfAlgo
::
GetOutputInferDataType
(
origin_cnode
,
0
);
for
(
int
i
=
0
;
i
<
num_split
;
++
i
)
{
new_type_ids
->
emplace_back
(
type_id
);
new_output_shapes
->
emplace_back
(
output_shape
);
}
}
void
SetAttrAndAbstractForBaseSplitv
(
const
CNodePtr
&
origin_cnode
,
const
CNodePtr
&
base_splitv
,
const
std
::
vector
<
int
>
&
size_splits_base
,
int
split_dim
,
int
num_split
)
{
SetAttrForSplitVNode
(
base_splitv
,
size_splits_base
,
split_dim
,
num_split
);
std
::
vector
<
TypeId
>
base_type_ids
;
std
::
vector
<
std
::
vector
<
size_t
>>
base_output_shapes_base
;
auto
output_shape
=
AnfAlgo
::
GetOutputInferShape
(
origin_cnode
,
0
);
TypeId
type_id
=
AnfAlgo
::
GetOutputInferDataType
(
origin_cnode
,
0
);
for
(
int
i
=
0
;
i
<
num_split
;
++
i
)
{
output_shape
[
split_dim
]
=
size_splits_base
[
i
];
base_output_shapes_base
.
emplace_back
(
output_shape
);
base_type_ids
.
emplace_back
(
type_id
);
}
AnfAlgo
::
SetOutputInferTypeAndShape
(
base_type_ids
,
base_output_shapes_base
,
base_splitv
.
get
());
}
AnfNodePtr
DoFission
(
const
FuncGraphPtr
&
func_graph
,
const
CNodePtr
&
cnode
,
int
num_split
,
int
divisor
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
auto
split_dim
=
AnfAlgo
::
GetNodeAttr
<
int
>
(
cnode
,
kAttrAxis
);
CNodePtr
base_splitv
=
CreateBaseSplitVNode
(
func_graph
,
cnode
);
// Create new size_splits for "size_splits" attr of each new Splitv node which has full inputs.
auto
small_split_size
=
SizeToInt
(
GetSmallSplitSize
(
cnode
,
split_dim
,
num_split
));
std
::
vector
<
int
>
size_splits_new
;
for
(
int
i
=
0
;
i
<
divisor
;
++
i
)
{
size_splits_new
.
emplace_back
(
small_split_size
);
}
// Create new output shape and new output type id for each new Splitv node which has full inputs.
std
::
vector
<
TypeId
>
new_type_ids
;
std
::
vector
<
std
::
vector
<
size_t
>>
new_output_shapes
;
CreateOutputShapeAndTypeId
(
cnode
,
split_dim
,
small_split_size
,
divisor
,
&
new_type_ids
,
&
new_output_shapes
);
// Create make_tuple input to create a make_tuple for replacing the old Split node.
std
::
vector
<
AnfNodePtr
>
make_tuple_inputs
{
NewValueNode
(
prim
::
kPrimMakeTuple
)};
// Start to divide the outputs of Split.
std
::
vector
<
int
>
size_splits_base
;
const
auto
base_split_size
=
divisor
*
small_split_size
;
int
nodes_num
=
0
;
int
cur_output_index
=
0
;
while
(
num_split
-
cur_output_index
>
divisor
)
{
CNodePtr
new_splitv
=
CreateSplitVNode
(
func_graph
,
CreateTupleGetItem
(
func_graph
,
base_splitv
,
nodes_num
));
SetAttrForSplitVNode
(
new_splitv
,
size_splits_new
,
split_dim
,
divisor
);
AnfAlgo
::
SetOutputInferTypeAndShape
(
new_type_ids
,
new_output_shapes
,
new_splitv
.
get
());
AddNewOutputs
(
func_graph
,
new_splitv
,
divisor
,
&
make_tuple_inputs
);
cur_output_index
+=
divisor
;
size_splits_base
.
emplace_back
(
base_split_size
);
nodes_num
++
;
}
if
(
cur_output_index
<
num_split
)
{
auto
last_node_num_split
=
num_split
-
cur_output_index
;
if
(
last_node_num_split
>
1
)
{
CNodePtr
new_splitv
=
CreateSplitVNode
(
func_graph
,
CreateTupleGetItem
(
func_graph
,
base_splitv
,
nodes_num
));
std
::
vector
<
int
>
size_splits_new_last
;
for
(
int
i
=
0
;
i
<
last_node_num_split
;
++
i
)
{
size_splits_new_last
.
emplace_back
(
small_split_size
);
}
SetAttrForSplitVNode
(
new_splitv
,
size_splits_new_last
,
split_dim
,
last_node_num_split
);
// Create new output shape and new output type id for the last Splitv node
std
::
vector
<
TypeId
>
last_new_type_ids
;
std
::
vector
<
std
::
vector
<
size_t
>>
last_new_output_shapes
;
CreateOutputShapeAndTypeId
(
cnode
,
split_dim
,
small_split_size
,
last_node_num_split
,
&
last_new_type_ids
,
&
last_new_output_shapes
);
AnfAlgo
::
SetOutputInferTypeAndShape
(
last_new_type_ids
,
last_new_output_shapes
,
new_splitv
.
get
());
AddNewOutputs
(
func_graph
,
new_splitv
,
last_node_num_split
,
&
make_tuple_inputs
);
size_splits_base
.
emplace_back
(
last_node_num_split
*
small_split_size
);
}
else
{
make_tuple_inputs
.
emplace_back
(
CreateTupleGetItem
(
func_graph
,
base_splitv
,
nodes_num
));
size_splits_base
.
emplace_back
(
small_split_size
);
}
nodes_num
++
;
}
// Set Attr and abstract for the base splitv
SetAttrAndAbstractForBaseSplitv
(
cnode
,
base_splitv
,
size_splits_base
,
split_dim
,
nodes_num
);
AnfNodePtr
make_tuple
=
func_graph
->
NewCNode
(
make_tuple_inputs
);
return
make_tuple
;
}
}
// namespace
const
BaseRef
SplitFission
::
DefinePattern
()
const
{
VarPtr
Xs
=
std
::
make_shared
<
SeqVar
>
();
auto
split_prim
=
std
::
make_shared
<
Primitive
>
(
kSplitOpName
);
return
VectorRef
({
split_prim
,
Xs
});
}
const
AnfNodePtr
SplitFission
::
Process
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
node
,
const
EquivPtr
&
)
const
{
MS_EXCEPTION_IF_NULL
(
node
);
auto
cnode
=
node
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
cnode
);
// Check output num
if
(
!
AnfAlgo
::
HasNodeAttr
(
kAttrOutputNum
,
cnode
))
{
return
nullptr
;
}
auto
num_split
=
AnfAlgo
::
GetNodeAttr
<
int
>
(
cnode
,
kAttrOutputNum
);
if
(
num_split
<=
outputs_divisor_
)
{
return
nullptr
;
}
return
DoFission
(
func_graph
,
cnode
,
num_split
,
outputs_divisor_
);
}
}
// namespace opt
}
// namespace mindspore
mindspore/ccsrc/pre_activate/ascend/ir_fission/split_fission.h
0 → 100644
浏览文件 @
a3e7b304
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_SPLIT_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_SPLIT_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace
mindspore
{
namespace
opt
{
constexpr
int
kSplitOutputsDivisor
=
63
;
class
SplitFission
:
public
PatternProcessPass
{
public:
explicit
SplitFission
(
bool
multigraph
=
true
)
:
PatternProcessPass
(
"split_fission"
,
multigraph
),
outputs_divisor_
(
kSplitOutputsDivisor
)
{}
~
SplitFission
()
override
=
default
;
const
BaseRef
DefinePattern
()
const
override
;
const
AnfNodePtr
Process
(
const
FuncGraphPtr
&
,
const
AnfNodePtr
&
,
const
EquivPtr
&
)
const
override
;
private:
int
outputs_divisor_
;
};
}
// namespace opt
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_SPLIT_FISSION_H_
mindspore/ccsrc/pre_activate/common/helper.h
浏览文件 @
a3e7b304
...
...
@@ -97,6 +97,7 @@ constexpr size_t kBiasAddInputNum = 3;
constexpr
size_t
kTopkInputNum
=
3
;
constexpr
size_t
kLarsV2InputNum
=
5
;
constexpr
size_t
kFusedMulApplyMomentumOutputNum
=
2
;
constexpr
size_t
kSplitInputNum
=
2
;
enum
FusedBatchNormInput
{
kX
=
1
,
...
...
mindspore/ccsrc/utils/utils.h
浏览文件 @
a3e7b304
...
...
@@ -72,6 +72,7 @@ constexpr auto kUnsortedSegmentMinOpName = "UnsortedSegmentMin";
constexpr
auto
kFlattenGradOpName
=
"FlattenGrad"
;
constexpr
auto
kExpandDimsOpName
=
"ExpandDims"
;
constexpr
auto
kSplitOpName
=
"Split"
;
constexpr
auto
kSplitVOpName
=
"SplitV"
;
constexpr
auto
kSparseApplyAdagradOpName
=
"SparseApplyAdagrad"
;
constexpr
auto
kMomentumOpName
=
"Momentum"
;
constexpr
auto
kApplyMomentumOpName
=
"ApplyMomentum"
;
...
...
@@ -211,6 +212,10 @@ constexpr auto kAttrWaitEvent = "wait_event";
constexpr
auto
kAttrRecordEventStream
=
"record_event_stream"
;
constexpr
auto
kAttrWaitEventStream
=
"wait_event_stream"
;
constexpr
auto
kAttrIndex
=
"index"
;
constexpr
auto
kAttrSplitDim
=
"split_dim"
;
constexpr
auto
kAttrNumSplit
=
"num_split"
;
constexpr
auto
kAttrOutputNum
=
"output_num"
;
constexpr
auto
kAttrSizeSplits
=
"size_splits"
;
// attr value
constexpr
auto
kValueTargetSwitch
=
"target_switch"
;
...
...
tests/ut/cpp/pre_activate/ascend/ir_fission/split_fission_test.cc
0 → 100644
浏览文件 @
a3e7b304
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#define private public
#define protected public
#include "pre_activate/ascend/ir_fission/split_fission.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
opt
{
class
TestHWSplitFission
:
public
BackendCommon
{
public:
TestHWSplitFission
()
:
get_py_fun_
(
"gtest_input.pre_activate.split_fission_test"
,
true
)
{}
~
TestHWSplitFission
()
override
=
default
;
UT
::
PyFuncGraphFetcher
get_py_fun_
;
};
TEST_F
(
TestHWSplitFission
,
test_split_fission_divided_by_3
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_split_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
512
,
3
,
1
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
args_spec_list
.
push_back
(
x_abstract
);
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
split_fission
=
std
::
make_shared
<
opt
::
SplitFission
>
();
split_fission
->
outputs_divisor_
=
3
;
pm
->
AddPass
(
split_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_split_fission"
,
"after"
);
EXPECT_TRUE
(
CheckEqualGraph
(
g_after
,
new_graph
));
}
}
// namespace opt
}
// namespace mindspore
tests/ut/cpp/python_input/gtest_input/pre_activate/split_fission_test.py
0 → 100644
浏览文件 @
a3e7b304
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from
mindspore.ops
import
Primitive
from
mindspore.ops
import
operations
as
P
split
=
P
.
Split
(
0
,
8
)
make_tuple
=
Primitive
(
'make_tuple'
)
tuple_getitem
=
Primitive
(
'tuple_getitem'
)
splitv
=
Primitive
(
'SplitV'
)
class
FnDict
:
def
__init__
(
self
):
self
.
fnDict
=
{}
def
__call__
(
self
,
fn
):
self
.
fnDict
[
fn
.
__name__
]
=
fn
def
__getitem__
(
self
,
name
):
return
self
.
fnDict
[
name
]
def
test_split_fission
(
tag
):
""" test_adam_apply_one_with_decay_rule """
fns
=
FnDict
()
@
fns
def
before
(
x
):
return
split
(
x
)
@
fns
def
after
(
x
):
splitv0
=
splitv
(
x
)
splitv1
=
splitv
(
tuple_getitem
(
splitv0
,
0
))
splitv2
=
splitv
(
tuple_getitem
(
splitv0
,
1
))
splitv3
=
splitv
(
tuple_getitem
(
splitv0
,
2
))
make_tuple0
=
make_tuple
(
tuple_getitem
(
splitv1
,
0
),
tuple_getitem
(
splitv1
,
1
),
tuple_getitem
(
splitv1
,
2
),
tuple_getitem
(
splitv2
,
0
),
tuple_getitem
(
splitv2
,
1
),
tuple_getitem
(
splitv2
,
2
),
tuple_getitem
(
splitv3
,
0
),
tuple_getitem
(
splitv3
,
1
))
return
make_tuple
(
make_tuple
(
tuple_getitem
(
make_tuple0
,
0
),
tuple_getitem
(
make_tuple0
,
1
),
tuple_getitem
(
make_tuple0
,
2
),
tuple_getitem
(
make_tuple0
,
3
),
tuple_getitem
(
make_tuple0
,
4
),
tuple_getitem
(
make_tuple0
,
5
),
tuple_getitem
(
make_tuple0
,
6
),
tuple_getitem
(
make_tuple0
,
7
)))
return
fns
[
tag
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录