Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a342a615
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a342a615
编写于
7月 03, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 03, 2020
浏览文件
操作
浏览文件
下载
差异文件
!2823 fix CropAndResize doc
Merge pull request !2823 from xutianchun/fix_doc
上级
17e17868
77b5ae05
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
16 addition
and
16 deletion
+16
-16
mindspore/ops/operations/image_ops.py
mindspore/ops/operations/image_ops.py
+14
-14
tests/st/ops/ascend/test_aicpu_ops/test_crop_and_reszie.py
tests/st/ops/ascend/test_aicpu_ops/test_crop_and_reszie.py
+2
-2
未找到文件。
mindspore/ops/operations/image_ops.py
浏览文件 @
a342a615
...
...
@@ -34,21 +34,21 @@ class CropAndResize(PrimitiveWithInfer):
Inputs:
- **x** (Tensor) - The input image must be a 4-D tensor of shape [batch, image_height, image_width, depth].
Types allowed: int8, int16, int32, int64, float16, float32, float64, uint8, uint16.
Types allowed: int8, int16, int32, int64, float16, float32, float64, uint8, uint16.
- **boxes** (Tensor) - A 2-D tensor of shape [num_boxes, 4].
The i-th row of the tensor specifies the coordinates of a box in the box_ind[i] image
and is specified in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of y is mapped to
the image coordinate at y * (image_height - 1), so as the [0, 1] interval of normalized image height is
mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled
crop is an up-down flipped version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the [0, 1] range are allowed, in which case we use extrapolation_value to
extrapolate the input image values. Types allowd: float32.
The i-th row of the tensor specifies the coordinates of a box in the box_ind[i] image
and is specified in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of y is mapped to
the image coordinate at y * (image_height - 1), so as the [0, 1] interval of normalized image height is
mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled
crop is an up-down flipped version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the [0, 1] range are allowed, in which case we use extrapolation_value to
extrapolate the input image values. Types allowd: float32.
- **box_index** (Tensor) - A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
The value of box_ind[i] specifies the image that the i-th box refers to. Types allowd: int32.
The value of box_ind[i] specifies the image that the i-th box refers to. Types allowd: int32.
- **crop_size** (Tensor) - Only constant value is allowd. Types allowed: int32.
A 1-D tensor of 2 elements, size = [crop_height, crop_width].
All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved.
Both crop_height and crop_width need to be positive.
A 1-D tensor of 2 elements, size = [crop_height, crop_width].
All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved.
Both crop_height and crop_width need to be positive.
Outputs:
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] with type: float32.
...
...
@@ -68,8 +68,8 @@ class CropAndResize(PrimitiveWithInfer):
>>> IMAGE_WIDTH = 256
>>> CHANNELS = 3
>>> image = np.random.normal(size=[BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS]).astype(np.float32)
>>> boxes = np.random.uniform(s
hap
e=[NUM_BOXES, 4]).astype(np.float32)
>>> box_index = np.random.uniform(s
hap
e=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
>>> boxes = np.random.uniform(s
iz
e=[NUM_BOXES, 4]).astype(np.float32)
>>> box_index = np.random.uniform(s
iz
e=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
>>> crop_size = np.array([24, 24]).astype(np.int32)
>>> crop_and_resize = CropAndResizeNet(crop_size=Tensor(crop_size))
>>> output = crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_index))
...
...
tests/st/ops/ascend/test_aicpu_ops/test_crop_and_reszie.py
浏览文件 @
a342a615
...
...
@@ -41,8 +41,8 @@ def test_net_float32():
image_width
=
256
channels
=
3
image
=
np
.
random
.
normal
(
size
=
[
batch_size
,
image_height
,
image_width
,
channels
]).
astype
(
np
.
float32
)
boxes
=
np
.
random
.
uniform
(
s
hap
e
=
[
num_boxes
,
4
]).
astype
(
np
.
float32
)
box_index
=
np
.
random
.
uniform
(
s
hap
e
=
[
num_boxes
],
low
=
0
,
high
=
batch_size
).
astype
(
np
.
int32
)
boxes
=
np
.
random
.
uniform
(
s
iz
e
=
[
num_boxes
,
4
]).
astype
(
np
.
float32
)
box_index
=
np
.
random
.
uniform
(
s
iz
e
=
[
num_boxes
],
low
=
0
,
high
=
batch_size
).
astype
(
np
.
int32
)
crop_size
=
np
.
array
([
24
,
24
]).
astype
(
np
.
int32
)
net
=
Net
(
crop_size
=
Tensor
(
crop_size
))
output
=
net
(
Tensor
(
image
),
Tensor
(
boxes
),
Tensor
(
box_index
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录