提交 a301fc17 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!3916 remove loss_scale range check which is a temp fix.

Merge pull request !3916 from xychow/remove-loss-scale-range-check
...@@ -38,9 +38,24 @@ bool AbstractBase::operator==(const AbstractBase &other) const { ...@@ -38,9 +38,24 @@ bool AbstractBase::operator==(const AbstractBase &other) const {
<< this->ToString() << ", other: " << other.ToString(); << this->ToString() << ", other: " << other.ToString();
} }
bool value_equal = *value_ == *other.value_; bool value_equal = false;
bool type_equal = *type_ == *other.type_; if (value_ == other.value_) {
bool shape_equal = *shape_ == *other.shape_; value_equal = true;
} else if (*value_ == *other.value_) {
value_equal = true;
}
bool type_equal = false;
if (type_ == other.type_) {
type_equal = true;
} else if (*type_ == *other.type_) {
type_equal = true;
}
bool shape_equal = false;
if (shape_ == other.shape_) {
shape_equal = true;
} else if (*shape_ == *other.shape_) {
shape_equal = true;
}
return value_equal && type_equal && shape_equal; return value_equal && type_equal && shape_equal;
} }
......
...@@ -276,7 +276,7 @@ def test_compile_fp16_lr_overflow_dynamic_graph(): ...@@ -276,7 +276,7 @@ def test_compile_fp16_lr_overflow_dynamic_graph():
print("the result is ", output) print("the result is ", output)
def test_adam_compile(): def adam_compile(loss_scale=1.0):
inputs = Tensor(np.ones([15, 1]).astype(np.float32)) inputs = Tensor(np.ones([15, 1]).astype(np.float32))
label = Tensor(np.zeros([15, 1]).astype(np.float32)) label = Tensor(np.zeros([15, 1]).astype(np.float32))
scaling_sens = Tensor(np.full((1), 1.0), dtype=mstype.float32) scaling_sens = Tensor(np.full((1), 1.0), dtype=mstype.float32)
...@@ -284,10 +284,17 @@ def test_adam_compile(): ...@@ -284,10 +284,17 @@ def test_adam_compile():
loss = MSELoss() loss = MSELoss()
optimizer = Adam(net.trainable_params(), learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, optimizer = Adam(net.trainable_params(), learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
use_nesterov=False, weight_decay=0.0, loss_scale=1.0) use_nesterov=False, weight_decay=0.0, loss_scale=loss_scale)
net_with_loss = WithLossCell(net, loss) net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer) train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer)
train_network.set_train() train_network.set_train()
output = train_network(inputs, label, scaling_sens) output = train_network(inputs, label, scaling_sens)
print("the result is ", output) print("the result is ", output)
def test_adam_compile():
adam_compile()
def test_adam_loss_scale_compile():
""" test setting loss_scale to 1e-40 """
adam_compile(loss_scale=1e-40)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册