Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
99bbb3a3
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
99bbb3a3
编写于
4月 26, 2020
作者:
M
meixiaowei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify scripts for pylint
上级
f1cec60d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
37 addition
and
42 deletion
+37
-42
example/resnet101_imagenet/crossentropy.py
example/resnet101_imagenet/crossentropy.py
+3
-3
example/resnet101_imagenet/dataset.py
example/resnet101_imagenet/dataset.py
+1
-1
example/resnet101_imagenet/lr_generator.py
example/resnet101_imagenet/lr_generator.py
+2
-3
example/resnet101_imagenet/train.py
example/resnet101_imagenet/train.py
+8
-12
example/resnet101_imagenet/var_init.py
example/resnet101_imagenet/var_init.py
+22
-21
mindspore/model_zoo/resnet.py
mindspore/model_zoo/resnet.py
+1
-2
未找到文件。
example/resnet101_imagenet/crossentropy.py
浏览文件 @
99bbb3a3
...
@@ -12,15 +12,16 @@
...
@@ -12,15 +12,16 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
# ============================================================================
# ============================================================================
"""define loss function for network"""
from
mindspore.nn.loss.loss
import
_Loss
from
mindspore.nn.loss.loss
import
_Loss
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
functional
as
F
from
mindspore.ops
import
functional
as
F
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
"""define loss function for network"""
class
CrossEntropy
(
_Loss
):
class
CrossEntropy
(
_Loss
):
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
def
__init__
(
self
,
smooth_factor
=
0.
,
num_classes
=
1001
):
def
__init__
(
self
,
smooth_factor
=
0.
,
num_classes
=
1001
):
super
(
CrossEntropy
,
self
).
__init__
()
super
(
CrossEntropy
,
self
).
__init__
()
self
.
onehot
=
P
.
OneHot
()
self
.
onehot
=
P
.
OneHot
()
...
@@ -28,7 +29,6 @@ class CrossEntropy(_Loss):
...
@@ -28,7 +29,6 @@ class CrossEntropy(_Loss):
self
.
off_value
=
Tensor
(
1.0
*
smooth_factor
/
(
num_classes
-
1
),
mstype
.
float32
)
self
.
off_value
=
Tensor
(
1.0
*
smooth_factor
/
(
num_classes
-
1
),
mstype
.
float32
)
self
.
ce
=
nn
.
SoftmaxCrossEntropyWithLogits
()
self
.
ce
=
nn
.
SoftmaxCrossEntropyWithLogits
()
self
.
mean
=
P
.
ReduceMean
(
False
)
self
.
mean
=
P
.
ReduceMean
(
False
)
def
construct
(
self
,
logit
,
label
):
def
construct
(
self
,
logit
,
label
):
one_hot_label
=
self
.
onehot
(
label
,
F
.
shape
(
logit
)[
1
],
self
.
on_value
,
self
.
off_value
)
one_hot_label
=
self
.
onehot
(
label
,
F
.
shape
(
logit
)[
1
],
self
.
on_value
,
self
.
off_value
)
loss
=
self
.
ce
(
logit
,
one_hot_label
)
loss
=
self
.
ce
(
logit
,
one_hot_label
)
...
...
example/resnet101_imagenet/dataset.py
浏览文件 @
99bbb3a3
...
@@ -57,7 +57,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
...
@@ -57,7 +57,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
normalize_op
=
C
.
Normalize
((
0.475
,
0.451
,
0.392
),
(
0.275
,
0.267
,
0.278
))
normalize_op
=
C
.
Normalize
((
0.475
,
0.451
,
0.392
),
(
0.275
,
0.267
,
0.278
))
changeswap_op
=
C
.
HWC2CHW
()
changeswap_op
=
C
.
HWC2CHW
()
trans
=
[]
trans
=
[]
if
do_train
:
if
do_train
:
trans
=
[
decode_op
,
trans
=
[
decode_op
,
random_resize_crop_op
,
random_resize_crop_op
,
...
...
example/resnet101_imagenet/lr_generator.py
浏览文件 @
99bbb3a3
...
@@ -13,9 +13,8 @@
...
@@ -13,9 +13,8 @@
# limitations under the License.
# limitations under the License.
# ============================================================================
# ============================================================================
"""learning rate generator"""
"""learning rate generator"""
import
numpy
as
np
import
math
import
math
import
numpy
as
np
def
linear_warmup_lr
(
current_step
,
warmup_steps
,
base_lr
,
init_lr
):
def
linear_warmup_lr
(
current_step
,
warmup_steps
,
base_lr
,
init_lr
):
lr_inc
=
(
float
(
base_lr
)
-
float
(
init_lr
))
/
float
(
warmup_steps
)
lr_inc
=
(
float
(
base_lr
)
-
float
(
init_lr
))
/
float
(
warmup_steps
)
...
@@ -50,7 +49,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
...
@@ -50,7 +49,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
decayed
=
linear_decay
*
cosine_decay
+
0.00001
decayed
=
linear_decay
*
cosine_decay
+
0.00001
lr
=
base_lr
*
decayed
lr
=
base_lr
*
decayed
lr_each_step
.
append
(
lr
)
lr_each_step
.
append
(
lr
)
return
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
return
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
def
get_lr
(
global_step
,
lr_init
,
lr_end
,
lr_max
,
warmup_epochs
,
total_epochs
,
steps_per_epoch
,
lr_decay_mode
):
def
get_lr
(
global_step
,
lr_init
,
lr_end
,
lr_max
,
warmup_epochs
,
total_epochs
,
steps_per_epoch
,
lr_decay_mode
):
"""
"""
...
...
example/resnet101_imagenet/train.py
浏览文件 @
99bbb3a3
...
@@ -14,11 +14,12 @@
...
@@ -14,11 +14,12 @@
# ============================================================================
# ============================================================================
"""train_imagenet."""
"""train_imagenet."""
import
os
import
os
import
math
import
argparse
import
argparse
import
random
import
random
import
numpy
as
np
import
numpy
as
np
from
dataset
import
create_dataset
from
dataset
import
create_dataset
from
lr_generator
import
get_lr
from
lr_generator
import
get_lr
,
warmup_cosine_annealing_lr
from
config
import
config
from
config
import
config
from
mindspore
import
context
from
mindspore
import
context
from
mindspore
import
Tensor
from
mindspore
import
Tensor
...
@@ -33,7 +34,7 @@ from mindspore.communication.management import init
...
@@ -33,7 +34,7 @@ from mindspore.communication.management import init
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
crossentropy
import
CrossEntropy
from
crossentropy
import
CrossEntropy
from
var_init
import
default_recurisive_init
,
KaimingNormal
from
var_init
import
default_recurisive_init
,
KaimingNormal
from
mindspore.common
import
initializer
as
weight_init
import
mindspore.common.
initializer
as
weight_init
random
.
seed
(
1
)
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
...
@@ -69,23 +70,20 @@ if __name__ == '__main__':
...
@@ -69,23 +70,20 @@ if __name__ == '__main__':
epoch_size
=
config
.
epoch_size
epoch_size
=
config
.
epoch_size
net
=
resnet101
(
class_num
=
config
.
class_num
)
net
=
resnet101
(
class_num
=
config
.
class_num
)
# weight init
# weight init
default_recurisive_init
(
net
)
default_recurisive_init
(
net
)
for
name
,
cell
in
net
.
cells_and_names
():
for
name
,
cell
in
net
.
cells_and_names
():
if
isinstance
(
cell
,
nn
.
Conv2d
):
if
isinstance
(
cell
,
nn
.
Conv2d
):
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
KaimingNormal
(
a
=
math
.
sqrt
(
5
),
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
KaimingNormal
(
a
=
math
.
sqrt
(
5
),
mode
=
'fan_out'
,
nonlinearity
=
'relu'
),
mode
=
'fan_out'
,
nonlinearity
=
'relu'
),
cell
.
weight
.
default_input
.
shape
(),
cell
.
weight
.
default_input
.
shape
(),
cell
.
weight
.
default_input
.
dtype
())
cell
.
weight
.
default_input
.
dtype
())
if
not
config
.
label_smooth
:
if
not
config
.
label_smooth
:
config
.
label_smooth_factor
=
0.0
config
.
label_smooth_factor
=
0.0
loss
=
CrossEntropy
(
smooth_factor
=
config
.
label_smooth_factor
,
num_classes
=
config
.
class_num
)
loss
=
CrossEntropy
(
smooth_factor
=
config
.
label_smooth_factor
,
num_classes
=
config
.
class_num
)
if
args_opt
.
do_train
:
if
args_opt
.
do_train
:
dataset
=
create_dataset
(
dataset_path
=
args_opt
.
dataset_path
,
do_train
=
True
,
dataset
=
create_dataset
(
dataset_path
=
args_opt
.
dataset_path
,
do_train
=
True
,
repeat_num
=
epoch_size
,
batch_size
=
config
.
batch_size
)
repeat_num
=
epoch_size
,
batch_size
=
config
.
batch_size
)
step_size
=
dataset
.
get_dataset_size
()
step_size
=
dataset
.
get_dataset_size
()
loss_scale
=
FixedLossScaleManager
(
config
.
loss_scale
,
drop_overflow_update
=
False
)
loss_scale
=
FixedLossScaleManager
(
config
.
loss_scale
,
drop_overflow_update
=
False
)
...
@@ -96,12 +94,10 @@ if __name__ == '__main__':
...
@@ -96,12 +94,10 @@ if __name__ == '__main__':
lr
=
Tensor
(
get_lr
(
global_step
=
0
,
lr_init
=
config
.
lr_init
,
lr_end
=
config
.
lr_end
,
lr_max
=
config
.
lr_max
,
lr
=
Tensor
(
get_lr
(
global_step
=
0
,
lr_init
=
config
.
lr_init
,
lr_end
=
config
.
lr_end
,
lr_max
=
config
.
lr_max
,
warmup_epochs
=
config
.
warmup_epochs
,
total_epochs
=
epoch_size
,
steps_per_epoch
=
step_size
,
warmup_epochs
=
config
.
warmup_epochs
,
total_epochs
=
epoch_size
,
steps_per_epoch
=
step_size
,
lr_decay_mode
=
'poly'
))
lr_decay_mode
=
'poly'
))
opt
=
Momentum
(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
lr
,
config
.
momentum
,
opt
=
Momentum
(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
lr
,
config
.
momentum
,
config
.
weight_decay
,
config
.
loss_scale
)
config
.
weight_decay
,
config
.
loss_scale
)
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
amp_level
=
'O2'
,
keep_batchnorm_fp32
=
False
,
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
amp_level
=
'O2'
,
keep_batchnorm_fp32
=
False
,
loss_scale_manager
=
loss_scale
,
metrics
=
{
'acc'
})
loss_scale_manager
=
loss_scale
,
metrics
=
{
'acc'
})
time_cb
=
TimeMonitor
(
data_size
=
step_size
)
time_cb
=
TimeMonitor
(
data_size
=
step_size
)
loss_cb
=
LossMonitor
()
loss_cb
=
LossMonitor
()
cb
=
[
time_cb
,
loss_cb
]
cb
=
[
time_cb
,
loss_cb
]
...
...
example/resnet101_imagenet/var_init.py
浏览文件 @
99bbb3a3
...
@@ -18,12 +18,10 @@ import numpy as np
...
@@ -18,12 +18,10 @@ import numpy as np
from
mindspore.common
import
initializer
as
init
from
mindspore.common
import
initializer
as
init
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore
import
Tensor
def
calculate_gain
(
nonlinearity
,
param
=
None
):
def
calculate_gain
(
nonlinearity
,
param
=
None
):
r
"""Return the recommended gain value for the given nonlinearity function.
r
"""Return the recommended gain value for the given nonlinearity function.
The values are as follows:
The values are as follows:
================= ====================================================
================= ====================================================
nonlinearity gain
nonlinearity gain
================= ====================================================
================= ====================================================
...
@@ -34,11 +32,9 @@ def calculate_gain(nonlinearity, param=None):
...
@@ -34,11 +32,9 @@ def calculate_gain(nonlinearity, param=None):
ReLU :math:`\sqrt{2}`
ReLU :math:`\sqrt{2}`
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
================= ====================================================
================= ====================================================
Args:
Args:
nonlinearity: the non-linear function (`nn.functional` name)
nonlinearity: the non-linear function (`nn.functional` name)
param: optional parameter for the non-linear function
param: optional parameter for the non-linear function
"""
"""
linear_fns
=
[
'linear'
,
'conv1d'
,
'conv2d'
,
'conv3d'
,
'conv_transpose1d'
,
'conv_transpose2d'
,
'conv_transpose3d'
]
linear_fns
=
[
'linear'
,
'conv1d'
,
'conv2d'
,
'conv3d'
,
'conv_transpose1d'
,
'conv_transpose2d'
,
'conv_transpose3d'
]
if
nonlinearity
in
linear_fns
or
nonlinearity
==
'sigmoid'
:
if
nonlinearity
in
linear_fns
or
nonlinearity
==
'sigmoid'
:
...
@@ -57,17 +53,15 @@ def calculate_gain(nonlinearity, param=None):
...
@@ -57,17 +53,15 @@ def calculate_gain(nonlinearity, param=None):
raise
ValueError
(
"negative_slope {} not a valid number"
.
format
(
param
))
raise
ValueError
(
"negative_slope {} not a valid number"
.
format
(
param
))
return
math
.
sqrt
(
2.0
/
(
1
+
negative_slope
**
2
))
return
math
.
sqrt
(
2.0
/
(
1
+
negative_slope
**
2
))
else
:
else
:
raise
ValueError
(
"Unsupported nonlinearity {}"
.
format
(
nonlinearity
))
raise
ValueError
(
"Unsupported nonlinearity {}"
.
format
(
nonlinearity
))
def
_calculate_correct_fan
(
array
,
mode
):
def
_calculate_correct_fan
(
array
,
mode
):
mode
=
mode
.
lower
()
mode
=
mode
.
lower
()
valid_modes
=
[
'fan_in'
,
'fan_out'
]
valid_modes
=
[
'fan_in'
,
'fan_out'
]
if
mode
not
in
valid_modes
:
if
mode
not
in
valid_modes
:
raise
ValueError
(
"Mode {} not supported, please use one of {}"
.
format
(
mode
,
valid_modes
))
raise
ValueError
(
"Mode {} not supported, please use one of {}"
.
format
(
mode
,
valid_modes
))
fan_in
,
fan_out
=
_calculate_fan_in_and_fan_out
(
array
)
fan_in
,
fan_out
=
_calculate_fan_in_and_fan_out
(
array
)
return
fan_in
if
mode
==
'fan_in'
else
fan_out
return
fan_in
if
mode
==
'fan_in'
else
fan_out
def
kaiming_uniform_
(
array
,
a
=
0
,
mode
=
'fan_in'
,
nonlinearity
=
'leaky_relu'
):
def
kaiming_uniform_
(
array
,
a
=
0
,
mode
=
'fan_in'
,
nonlinearity
=
'leaky_relu'
):
r
"""Fills the input `Tensor` with values according to the method
r
"""Fills the input `Tensor` with values according to the method
...
@@ -75,12 +69,10 @@ def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
...
@@ -75,12 +69,10 @@ def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
performance on ImageNet classification` - He, K. et al. (2015), using a
performance on ImageNet classification` - He, K. et al. (2015), using a
uniform distribution. The resulting tensor will have values sampled from
uniform distribution. The resulting tensor will have values sampled from
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
.. math::
.. math::
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
Also known as He initialization.
Also known as He initialization.
Args:
Args:
array: an n-dimensional `tensor`
array: an n-dimensional `tensor`
a: the negative slope of the rectifier used after this layer (only
a: the negative slope of the rectifier used after this layer (only
...
@@ -91,8 +83,7 @@ def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
...
@@ -91,8 +83,7 @@ def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
backwards pass.
backwards pass.
nonlinearity: the non-linear function (`nn.functional` name),
nonlinearity: the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
"""
fan
=
_calculate_correct_fan
(
array
,
mode
)
fan
=
_calculate_correct_fan
(
array
,
mode
)
gain
=
calculate_gain
(
nonlinearity
,
a
)
gain
=
calculate_gain
(
nonlinearity
,
a
)
std
=
gain
/
math
.
sqrt
(
fan
)
std
=
gain
/
math
.
sqrt
(
fan
)
...
@@ -129,6 +120,7 @@ def kaiming_normal_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
...
@@ -129,6 +120,7 @@ def kaiming_normal_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
return
np
.
random
.
normal
(
0
,
std
,
array
.
shape
)
return
np
.
random
.
normal
(
0
,
std
,
array
.
shape
)
def
_calculate_fan_in_and_fan_out
(
array
):
def
_calculate_fan_in_and_fan_out
(
array
):
"""calculate the fan_in and fan_out for input array"""
dimensions
=
len
(
array
.
shape
)
dimensions
=
len
(
array
.
shape
)
if
dimensions
<
2
:
if
dimensions
<
2
:
raise
ValueError
(
"Fan in and fan out can not be computed for array with fewer than 2 dimensions"
)
raise
ValueError
(
"Fan in and fan out can not be computed for array with fewer than 2 dimensions"
)
...
@@ -166,18 +158,27 @@ class KaimingNormal(init.Initializer):
...
@@ -166,18 +158,27 @@ class KaimingNormal(init.Initializer):
init
.
_assignment
(
arr
,
tmp
)
init
.
_assignment
(
arr
,
tmp
)
def
default_recurisive_init
(
custom_cell
):
def
default_recurisive_init
(
custom_cell
):
"""weight init for conv2d and dense"""
for
name
,
cell
in
custom_cell
.
cells_and_names
():
for
name
,
cell
in
custom_cell
.
cells_and_names
():
if
isinstance
(
cell
,
nn
.
Conv2d
):
if
isinstance
(
cell
,
nn
.
Conv2d
):
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingUniform
(
a
=
math
.
sqrt
(
5
)),
cell
.
weight
.
default_input
.
shape
(),
cell
.
weight
.
default_input
.
dtype
())
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingUniform
(
a
=
math
.
sqrt
(
5
)),
cell
.
weight
.
default_input
.
shape
(),
cell
.
weight
.
default_input
.
dtype
())
if
cell
.
bias
is
not
None
:
if
cell
.
bias
is
not
None
:
fan_in
,
_
=
_calculate_fan_in_and_fan_out
(
cell
.
weight
.
default_input
.
asnumpy
())
fan_in
,
_
=
_calculate_fan_in_and_fan_out
(
cell
.
weight
.
default_input
.
asnumpy
())
bound
=
1
/
math
.
sqrt
(
fan_in
)
bound
=
1
/
math
.
sqrt
(
fan_in
)
cell
.
bias
.
default_input
=
Tensor
(
np
.
random
.
uniform
(
-
bound
,
bound
,
cell
.
bias
.
default_input
.
shape
()),
cell
.
bias
.
default_input
.
dtype
())
cell
.
bias
.
default_input
=
Tensor
(
np
.
random
.
uniform
(
-
bound
,
bound
,
cell
.
bias
.
default_input
.
shape
()),
cell
.
bias
.
default_input
.
dtype
())
elif
isinstance
(
cell
,
nn
.
Dense
):
elif
isinstance
(
cell
,
nn
.
Dense
):
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingUniform
(
a
=
math
.
sqrt
(
5
)),
cell
.
weight
.
default_input
.
shape
(),
cell
.
weight
.
default_input
.
dtype
())
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingUniform
(
a
=
math
.
sqrt
(
5
)),
cell
.
weight
.
default_input
.
shape
(),
cell
.
weight
.
default_input
.
dtype
())
if
cell
.
bias
is
not
None
:
if
cell
.
bias
is
not
None
:
fan_in
,
_
=
_calculate_fan_in_and_fan_out
(
cell
.
weight
.
default_input
.
asnumpy
())
fan_in
,
_
=
_calculate_fan_in_and_fan_out
(
cell
.
weight
.
default_input
.
asnumpy
())
bound
=
1
/
math
.
sqrt
(
fan_in
)
bound
=
1
/
math
.
sqrt
(
fan_in
)
cell
.
bias
.
default_input
=
Tensor
(
np
.
random
.
uniform
(
-
bound
,
bound
,
cell
.
bias
.
default_input
.
shape
()),
cell
.
bias
.
default_input
.
dtype
())
cell
.
bias
.
default_input
=
Tensor
(
np
.
random
.
uniform
(
-
bound
,
bound
,
elif
isinstance
(
cell
,
nn
.
BatchNorm2d
)
or
isinstance
(
cell
,
nn
.
BatchNorm1d
):
cell
.
bias
.
default_input
.
shape
()),
cell
.
bias
.
default_input
.
dtype
())
elif
isinstance
(
cell
,
(
nn
.
BatchNorm2d
,
nn
.
BatchNorm1d
)):
pass
pass
mindspore/model_zoo/resnet.py
浏览文件 @
99bbb3a3
...
@@ -279,5 +279,4 @@ def resnet101(class_num=1001):
...
@@ -279,5 +279,4 @@ def resnet101(class_num=1001):
[
64
,
256
,
512
,
1024
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
[
1
,
2
,
2
,
2
],
class_num
)
class_num
)
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录