提交 97524b9d 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1823 support vm for ConfusionMatrix

Merge pull request !1823 from jiangjinsheng/vm_ConfusionMatrix
......@@ -237,3 +237,4 @@ from .basic_lstm_cell import _basic_lstm_cell_tbe
from .basic_lstm_cell_c_state_grad import _basic_lstm_cell_c_state_grad_tbe
from .basic_lstm_cell_weight_grad import _basic_lstm_cell_weight_grad_tbe
from .basic_lstm_cell_input_grad import _basic_lstm_cell_input_grad_tbe
from .confusion_matrix import _confusion_matrix_tbe
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ConfusionMatrix op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
confusion_matrix_op_info = TBERegOp("ConfusionMatrix") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("confusion_matrix.so") \
.compute_cost(10) \
.kernel_name("confusion_matrix") \
.partial_flag(True) \
.attr("num_classes", "required", "int", "all") \
.attr("dtype", "required", "str", "all") \
.input(0, "labels", False, "required", "all") \
.input(1, "predictions", False, "required", "all") \
.input(2, "weights", False, "optional", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.U8_Default, DataType.U8_Default) \
.get_op_info()
@op_info_register(confusion_matrix_op_info)
def _confusion_matrix_tbe():
"""ConfusionMatrix TBE register"""
return
......@@ -73,7 +73,8 @@ from .nn_ops import (LSTM, SGD, Adam, ApplyMomentum, BatchNorm,
TopK, BinaryCrossEntropy, SparseApplyAdagrad, LARSUpdate, ApplyFtrl, SparseApplyFtrl,
ApplyProximalAdagrad, SparseApplyProximalAdagrad,
ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell)
from .other_ops import Assign, IOU, BoundingBoxDecode, BoundingBoxEncode, CheckValid, MakeRefKey, CheckBprop
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode,
CheckValid, MakeRefKey, CheckBprop, ConfusionMatrix)
from . import _quant_ops
from ._quant_ops import *
from .thor_ops import *
......@@ -287,7 +288,8 @@ __all__ = [
"BesselI1e",
"Atan",
"Atanh",
"BasicLSTMCell"
"BasicLSTMCell",
"ConfusionMatrix"
]
__all__.extend(_quant_ops.__all__)
......
......@@ -366,3 +366,50 @@ class CheckBprop(PrimitiveWithInfer):
raise TypeError(f"{tips}, the dtype of {i}th output should be {ydtype},"
f" but got {xdtype}.")
return xdtypes
class ConfusionMatrix(PrimitiveWithInfer):
r"""
Calculate the confusion matrix from labels and predictions.
Args:
num_classes (int): The num of classes.
dtype (str): Data type of confusion matrix. Default: 'int32'.
Inputs:
- **labels** (Tensor) - real labels, tensor of 1-D. the dtype must be non-negative Integer.
- **predictions** (Tensor) - the labels from prediction, tensor of 1-D.
the shape same as `labels` and the dtype must be non-negative Integer.
- **weights** (Tensor) - tensor of 1-D. the shape same as `predictions`.
Outputs:
Tensor, the confusion matrix, with shape (`num_classes`, `num_classes`).
Examples:
>>> confusion_matrix = P.ConfusionMatrix(4)
>>> labels = Tensor([0, 1, 1, 3], mindspore.int32)
>>> predictions = Tensor([1, 2, 1, 3], mindspore.int32)
>>> confusion_matrix(labels, predictions)
"""
@prim_attr_register
def __init__(self, num_classes, dtype="int32"):
validator.check_value_type("num_classes", num_classes, [int], self.name)
validator.check_value_type("dtype", dtype, [str], self.name)
def infer_shape(self, labels, predictions, weights=None):
validator.check('labels dimension', len(labels), '', 1, Rel.EQ, self.name)
validator.check('labels shape', labels, 'predictions shape', predictions, Rel.EQ, self.name)
if weights is not None:
validator.check('labels shape', labels, 'weights shape', weights, Rel.EQ, self.name)
ret = (self.num_classes, self.num_classes)
return ret
def infer_dtype(self, labels, predictions, weights=None):
validator.check_subclass('labels', labels, mstype.tensor, self.name)
validator.check_subclass('predictions', predictions, mstype.tensor, self.name)
if weights is not None:
validator.check_subclass('weights', weights, mstype.tensor, self.name)
args = {"labels": labels, "predictions": predictions}
validator.check_tensor_type_same(args, (mstype.number_type), self.name)
return labels
......@@ -285,6 +285,16 @@ class SpaceToBatchNDNet(Cell):
def construct(self, x):
return self.space_to_batch_nd(x)
class ConfusionMatrixNet(Cell):
def __init__(self):
super(ConfusionMatrixNet, self).__init__()
self.confusion_matrix = P.ConfusionMatrix(4, "int32")
def construct(self, x, y):
return self.confusion_matrix(x, y)
test_case_array_ops = [
('CustNet1', {
'block': CustNet1(),
......@@ -325,6 +335,9 @@ test_case_array_ops = [
('BatchToSpaceNDNet', {
'block': BatchToSpaceNDNet(),
'desc_inputs': [Tensor(np.random.rand(4, 1, 1, 1).astype(np.float16))]}),
('ConfusionMatrixNet', {
'block': ConfusionMatrixNet(),
'desc_inputs': [Tensor([0, 1, 1, 3], ms.int32), Tensor([0, 1, 1, 3], ms.int32)]}),
]
test_case_lists = [test_case_array_ops]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册