提交 93d95d70 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1078 Add LarsV2 fission pass

Merge pull request !1078 from huanghui/lars-v2-fission-pass
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/lars_v2_fission.h"
#include <memory>
#include <vector>
#include "session/anf_runtime_algorithm.h"
#include "pre_activate/common/helper.h"
#include "utils/utils.h"
namespace mindspore {
namespace opt {
namespace {
void CreateOutputsOfSquareSumAll(const FuncGraphPtr &graph, const CNodePtr &lars_v2,
std::vector<AnfNodePtr> *square_sum_all_outputs) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(lars_v2);
if (lars_v2->size() != kLarsV2InputNum) {
MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum;
}
std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kSquareSumAllOpName))};
inputs.push_back(lars_v2->input(1));
inputs.push_back(lars_v2->input(2));
auto square_sum_all = graph->NewCNode(inputs);
MS_EXCEPTION_IF_NULL(square_sum_all);
square_sum_all->set_scope(lars_v2->scope());
auto types = {kNumberTypeFloat32, kNumberTypeFloat32};
std::vector<size_t> shape;
auto shapes = {shape, shape};
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, square_sum_all.get());
CreateMultipleOutputsOfAnfNode(graph, square_sum_all, 2, square_sum_all_outputs);
}
CNodePtr CreateLarsV2Update(const FuncGraphPtr &graph, const CNodePtr &lars_v2,
const std::vector<AnfNodePtr> &square_sum_all_outputs) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(lars_v2);
if (square_sum_all_outputs.size() != 2) {
MS_LOG(EXCEPTION) << "square_sum_all_outputs' size not equal 2";
}
if (lars_v2->size() != kLarsV2InputNum) {
MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum;
}
std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kLarsV2UpdateOpName))};
inputs.push_back(lars_v2->input(1));
inputs.push_back(lars_v2->input(2));
inputs.push_back(square_sum_all_outputs[0]);
inputs.push_back(square_sum_all_outputs[1]);
inputs.push_back(lars_v2->input(3));
inputs.push_back(lars_v2->input(4));
auto lars_v2_update = graph->NewCNode(inputs);
MS_EXCEPTION_IF_NULL(lars_v2_update);
lars_v2_update->set_scope(lars_v2->scope());
lars_v2_update->set_abstract(lars_v2->abstract());
return lars_v2_update;
}
} // namespace
const BaseRef LarsV2Fission::DefinePattern() const {
VarPtr Xs = std::make_shared<SeqVar>();
auto lars_v2_prim = std::make_shared<Primitive>(kLarsV2OpName);
return VectorRef({lars_v2_prim, Xs});
}
const AnfNodePtr LarsV2Fission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
auto lars_v2 = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(lars_v2);
std::vector<AnfNodePtr> square_sum_all_outputs;
CreateOutputsOfSquareSumAll(graph, lars_v2, &square_sum_all_outputs);
return CreateLarsV2Update(graph, lars_v2, square_sum_all_outputs);
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace mindspore {
namespace opt {
class LarsV2Fission : public PatternProcessPass {
public:
explicit LarsV2Fission(bool multigraph = true) : PatternProcessPass("lars_v2_fission", multigraph) {}
~LarsV2Fission() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
......@@ -91,6 +91,7 @@ constexpr size_t kBackendTransDataInputNum = 2;
constexpr size_t kApplyMomentumInputNum = 6;
constexpr size_t kBiasAddInputNum = 3;
constexpr size_t kTopkInputNum = 3;
constexpr size_t kLarsV2InputNum = 5;
enum FusedBatchNormInput {
kX = 1,
......
......@@ -144,6 +144,9 @@ constexpr auto kBNInferGradOpName = "BNInferGrad";
constexpr auto kCallOpName = "call";
constexpr auto kPartialOpName = "partial";
constexpr auto kSwitchOpName = "switch";
constexpr auto kLarsV2OpName = "LarsV2";
constexpr auto kLarsV2UpdateOpName = "LarsV2Update";
constexpr auto kSquareSumAllOpName = "SquareSumAll";
// attr key name
constexpr auto kAttrInputNames = "input_names";
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "pre_activate/ascend/ir_fission/lars_v2_fission.h"
namespace mindspore {
namespace opt {
class TestHWLarsV2Fission : public BackendCommon {
public:
TestHWLarsV2Fission() : get_py_fun_("gtest_input.pre_activate.lars_v2_fission_test", true) {}
~TestHWLarsV2Fission() override = default;
UT::PyFuncGraphFetcher get_py_fun_;
};
TEST_F(TestHWLarsV2Fission, test_fission) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "before");
EXPECT_NE(g, nullptr);
// set abstract for all nodes in g
std::vector<int> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
g->get_return()->input(1)->set_abstract(x_abstract);
for (auto &p: g->parameters()){
p->set_abstract(x_abstract);
}
AbstractBasePtrList args_spec_list;
auto kg = GetKernelGraph(g, args_spec_list, false);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::LarsV2Fission>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "after");
EXPECT_NE(g_after, nullptr);
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
} // namespace opt
} // namespace mindspore
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import Primitive
lars_v2 = Primitive('LarsV2')
square_sum_all = Primitive('SquareSumAll')
lars_v2_update = Primitive('LarsV2Update')
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive('tuple_getitem')
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_lars_v2_fission(tag):
fns = FnDict()
@fns
def before(input0, input1, input2, input3):
res = lars_v2(input0, input1, input2, input3)
return res
@fns
def after(input0, input1, input2, input3):
res = square_sum_all(input0, input1)
item0 = tuple_getitem(res, 0)
item1 = tuple_getitem(res, 1)
res = lars_v2_update(input0, input1, item0, item1, input2, input3)
return make_tuple(res)
return fns[tag]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册