提交 92f1855a 编写于 作者: B baihuawei

fix categorical in GraphMode

上级 1a4d3e35
......@@ -148,7 +148,7 @@ void LSTMGradCPUKernel::SetArgumentHandleOp(const std::vector<kernel::AddressPtr
SetArgumentHandle(DNNL_ARG_DIFF_DST_ITER_C, inputs[9]->addr);
}
void LSTMGradCPUKernel::Memset_op(const dnnl::memory &mem, string name) {
void LSTMGradCPUKernel::ResetMemory(const dnnl::memory &mem, string name) {
if (memset_s(mem.get_data_handle(), mem.get_desc().get_size(), 0, mem.get_desc().get_size())) {
MS_LOG(EXCEPTION) << name << " memset error";
}
......@@ -186,10 +186,10 @@ bool LSTMGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
auto user_diff_weights_h_memory = dnnl::memory(dnnl::memory::desc{{weights_h_dims_}, dt::f32, tag::ldgoi}, eng);
user_diff_weights_memory.set_data_handle(outputs[3]->addr);
user_diff_weights_h_memory.set_data_handle(reinterpret_cast<float *>(outputs[3]->addr) + weight_size_);
Memset_op(user_diff_weights_memory, "user weights grad");
Memset_op(user_diff_weights_h_memory, "user weights iter grad");
Memset_op(diff_weights_memory, "weights grad");
Memset_op(diff_weights_h_memory, "weights iter grad");
ResetMemory(user_diff_weights_memory, "user weights grad");
ResetMemory(user_diff_weights_h_memory, "user weights iter grad");
ResetMemory(diff_weights_memory, "weights grad");
ResetMemory(diff_weights_h_memory, "weights iter grad");
if (has_bias_) {
diff_bias_memory.set_data_handle(reinterpret_cast<float *>(outputs[3]->addr) + weight_size_ + weight_h_size_);
}
......
......@@ -42,7 +42,7 @@ class LSTMGradCPUKernel : public MKLCPUKernel {
const dnnl::memory &weights_h_memory, const dnnl::memory &bias_memory,
const dnnl::memory &diff_weights_memory, const dnnl::memory &diff_weights_h_memory,
const dnnl::memory &diff_bias_memory);
void Memset_op(const dnnl::memory &mem, string name);
void ResetMemory(const dnnl::memory &mem, string name);
void CheckParam(const CNodePtr &kernel_node);
int weight_size_ = 0;
int weight_h_size_ = 0;
......
......@@ -16,18 +16,6 @@
#include "multinomial_impl.cuh"
template <typename T>
__global__ void NormInput(T *input, const size_t distributions, const size_t categories) {
size_t size = distributions * categories;
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
if ((pos + 1) % categories != 0) {
int de_pos = (1 + pos / categories) * categories - 1;
input[pos] /= input[de_pos];
}
}
return;
}
template <typename T>
__global__ void CheckZeroKernel(const size_t distributions, const size_t categories, const T *input, T *out) {
out[0] = 0;
......@@ -61,6 +49,24 @@ void CheckNonNeg(const size_t size, const T *input, T *output, cudaStream_t cuda
CheckNonNegKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, output);
}
template <typename T>
__global__ void NormInputKernel(T *input, const size_t distributions, const size_t categories) {
size_t size = distributions * categories;
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
if ((pos + 1) % categories != 0) {
int de_pos = (1 + pos / categories) * categories - 1;
input[pos] /= input[de_pos];
}
}
return;
}
template <typename T>
void NormInput(T *input, const size_t distributions, const size_t categories, cudaStream_t cuda_stream) {
int count1 = distributions * categories;
NormInputKernel<<<GET_BLOCKS(count1), GET_THREADS, 0, cuda_stream>>>(input, distributions, categories);
}
template <typename T>
__device__ int BinarySearchForMultinomial(T *start_addr, int size, T rand) {
int start = 0;
......@@ -104,8 +110,6 @@ void Multinomial(int seed, T *input, int num_sample, curandState *globalState, i
RNG_seed = time(NULL);
}
int count = distributions * num_sample;
int count1 = distributions * categories;
NormInput<<<GET_BLOCKS(count1), GET_THREADS, 0, cuda_stream>>>(input, distributions, categories);
MultinomialKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(RNG_seed, input, num_sample, globalState,
output, distributions, categories);
return;
......@@ -116,3 +120,5 @@ template void Multinomial<float>(int seed, float *input, int num_sample, curandS
template void CheckNonNeg<float>(const size_t size, const float *input, float *output, cudaStream_t cuda_stream);
template void CheckZero<float>(const size_t distributions, const size_t categories, const float *input, float *output,
cudaStream_t cuda_stream);
template void NormInput<float>(float *input, const size_t distributions, const size_t categories,
cudaStream_t cuda_stream);
......@@ -26,4 +26,7 @@ template <typename T>
void CheckNonNeg(const size_t size, const T *input, T *output, cudaStream_t stream);
template <typename T>
void CheckZero(const size_t distributions, const size_t categories, const T *input, T *output, cudaStream_t stream);
template <typename T>
void NormInput(T *input, const size_t distributions, const size_t categories, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_IMPL_CUH_
......@@ -47,22 +47,23 @@ class MultinomialGpuKernel : public GpuKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
void *workspace_addr = GetDeviceAddress<void *>(workspace, 0);
void *workspace_addr = GetDeviceAddress<void *>(workspace, 1);
T *cum_sum_input = GetDeviceAddress<T>(workspace, 0);
curandState *devStates = reinterpret_cast<curandState *>(workspace_addr);
int *output_addr = GetDeviceAddress<int>(outputs, 0);
T *input_addr = GetDeviceAddress<T>(inputs, 0);
int categories = SizeToInt(inputs[0]->size / sizeof(T)) / distributions_;
int num_sample = SizeToInt(outputs[0]->size / sizeof(T)) / distributions_;
int num_sample = SizeToInt(outputs[0]->size / sizeof(int)) / distributions_;
// check input
T *cum_sum_input = nullptr;
CHECK_CUDA_RET_WITH_EXCEPT(cudaMalloc(reinterpret_cast<void **>(&cum_sum_input), input_size_0_),
"cudaMalloc failed.");
CheckPeram(input_addr, cum_sum_input, categories, stream_ptr);
if (replacement_) {
NormInput(cum_sum_input, IntToSize(distributions_), IntToSize(categories),
reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDA_RET_WITH_EXCEPT(cudaStreamSynchronize(reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaStreamSynchronize failed.");
Multinomial(seed_, cum_sum_input, num_sample, devStates, output_addr, IntToSize(distributions_),
IntToSize(categories), reinterpret_cast<cudaStream_t>(stream_ptr));
}
CHECK_CUDA_RET_WITH_EXCEPT(cudaFree(cum_sum_input), "cudaFree failed.");
return true;
}
......@@ -145,6 +146,7 @@ class MultinomialGpuKernel : public GpuKernel {
input_size_list_.push_back(input_size_0_);
input_size_list_.push_back(sizeof(int));
output_size_list_.push_back(output_size_);
workspace_size_list_.push_back(input_size_0_);
workspace_size_list_.push_back(workspace_size_);
}
......
......@@ -271,24 +271,6 @@ def probs_to_logits(probs, is_binary=False):
return P.Log()(ps_clamped)
def check_tensor_type(name, inputs, valid_type):
"""
Check if inputs is proper.
Args:
name: inputs name
inputs: Tensor to be checked.
Raises:
ValueError: if inputs is not a proper Tensor.
"""
if not isinstance(inputs, Tensor):
raise TypeError(f"{name} should be a Tensor")
input_type = P.DType()(inputs)
if input_type not in valid_type:
raise TypeError(f"{name} dtype is invalid")
def check_type(data_type, value_type, name):
if not data_type in value_type:
raise TypeError(
......@@ -304,6 +286,10 @@ def raise_none_error(name):
def raise_probs_logits_error():
raise TypeError("Either 'probs' or 'logits' must be specified, but not both.")
@constexpr
def raise_broadcast_error(shape_a, shape_b):
raise ValueError(f"Shape {shape_a} and {shape_b} is not broadcastable.")
@constexpr
def raise_not_impl_error(name):
raise ValueError(
......
......@@ -17,7 +17,8 @@ from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common import dtype as mstype
from .distribution import Distribution
from ._utils.utils import logits_to_probs, probs_to_logits, check_type, check_tensor_type, cast_to_tensor, raise_probs_logits_error
from ._utils.utils import logits_to_probs, probs_to_logits, check_type, cast_to_tensor, \
raise_probs_logits_error
class Categorical(Distribution):
......@@ -25,7 +26,7 @@ class Categorical(Distribution):
Creates a categorical distribution parameterized by either probs or logits (but not both).
Args:
probs (Tensor, list, numpy.ndarray, Parameter, float): event probabilities.
probs (Tensor, list, numpy.ndarray, Parameter): event probabilities.
logits (Tensor, list, numpy.ndarray, Parameter, float): event log-odds.
seed (int): seed to use in sampling. Default: 0.
dtype (mindspore.dtype): type of the distribution. Default: mstype.int32.
......@@ -77,6 +78,7 @@ class Categorical(Distribution):
if (probs is None) == (logits is None):
raise_probs_logits_error()
self.reduce_sum = P.ReduceSum(keep_dims=True)
self.reduce_sum1 = P.ReduceSum(keep_dims=False)
self.log = P.Log()
self.exp = P.Exp()
self.shape = P.Shape()
......@@ -88,6 +90,7 @@ class Categorical(Distribution):
self.expandim = P.ExpandDims()
self.gather = P.GatherNd()
self.concat = P.Concat(-1)
self.transpose = P.Transpose()
if probs is not None:
self._probs = cast_to_tensor(probs, mstype.float32)
input_sum = self.reduce_sum(self._probs, -1)
......@@ -102,8 +105,8 @@ class Categorical(Distribution):
self._param = self._logits
self._num_events = self.shape(self._param)[-1]
self._param2d = self.reshape(self._param, (-1, self._num_events))
self._batch_shape = self.shape(self._param2d)[0]
self._batch_shape = self.shape(self._param)[:-1]
self._batch_shape_n = (1,) * len(self._batch_shape)
@property
def logits(self):
......@@ -130,72 +133,35 @@ class Categorical(Distribution):
Tensor, shape is shape(probs)[:-1] + sample_shape
"""
self.checktuple(sample_shape, 'shape')
if sample_shape == ():
sample_shape = (1,)
num_sample = 1
for i in sample_shape:
num_sample *= i
probs_2d = self.reshape(self._probs, (-1, self._num_events))
samples = self.mutinomial(probs_2d, num_sample)
samples = self.transpose(samples, (1, 0))
extend_shape = sample_shape
if len(self.shape(self._probs)) > 1:
extend_shape = sample_shape + self.shape(self._probs)[:-1]
return self.cast(self.reshape(samples, extend_shape), self.dtype)
def _broad_cast_shape(self, a, b):
"""
Broadcast Tensor shape.
Args:
a (Tensor): A Tensor need to Broadcast.
b (Tensor): Another Tensor need to Broadcast.
Returns:
Tuple, Broadcast shape.
"""
shape_a = self.shape(a)
shape_b = self.shape(b)
size_a = len(shape_a)
size_b = len(shape_b)
if size_a > size_b:
size = size_a
shape_out = list(shape_a)
shape_short = list(shape_b)
diff_size = size_a - size_b
else:
size = size_b
shape_out = list(shape_b)
shape_short = list(shape_a)
diff_size = size_b - size_a
for i in range(diff_size, size):
if shape_out[i] == shape_short[i - diff_size]:
continue
if shape_out[i] == 1 or shape_short[i - diff_size] == 1:
shape_out[i] = shape_out[i] * shape_short[i - diff_size]
else:
raise ValueError(f"Shape {shape_a} and {shape_b} is not broadcastable.")
return tuple(shape_out)
def _log_prob(self, value):
r"""
Evaluate log probability.
Args:
value (Tensor): value to be evaluated. The dtype could be mstype.float32, bool, mstype.int32.
value (Tensor): value to be evaluated.
"""
if value is not None:
check_tensor_type("value", value, [mstype.float32, bool, mstype.int32])
value = self.expandim(self.cast(value, mstype.float32), -1)
broad_shape = self._broad_cast_shape(value, self._logits)
broad = P.BroadcastTo(broad_shape)
logits_pmf = self.reshape(broad(self._logits), (-1, broad_shape[-1]))
value = self.reshape(broad(value)[..., :1], (-1, 1))
index = nn.Range(0., self.shape(value)[0], 1)()
index = self.reshape(index, (-1, 1))
value = self.concat((index, value))
value = self.cast(value, mstype.int32)
return self.reshape(self.gather(logits_pmf, value), broad_shape[:-1])
return None
value = self._check_value(value, 'value')
value = self.expandim(self.cast(value, mstype.float32), -1)
broad_shape = self.shape(value + self._logits)
broad = P.BroadcastTo(broad_shape)
logits_pmf = self.reshape(broad(self._logits), (-1, broad_shape[-1]))
value = self.reshape(broad(value)[..., :1], (-1, 1))
index = nn.Range(0., self.shape(value)[0], 1)()
index = self.reshape(index, (-1, 1))
value = self.concat((index, value))
value = self.cast(value, mstype.int32)
return self.reshape(self.gather(logits_pmf, value), broad_shape[:-1])
def _entropy(self):
r"""
......@@ -205,7 +171,7 @@ class Categorical(Distribution):
H(X) = -\sum(logits * probs)
"""
p_log_p = self._logits * self._probs
return self.reduce_sum(-p_log_p, -1)
return self.reduce_sum1(-p_log_p, -1)
def enumerate_support(self, expand=True):
r"""
......@@ -213,8 +179,8 @@ class Categorical(Distribution):
"""
num_events = self._num_events
values = nn.Range(0., num_events, 1)()
values = self.reshape(values, (num_events, 1))
values = self.reshape(values, (num_events,) + self._batch_shape_n)
if expand:
values = P.BroadcastTo((num_events, self._batch_shape))(values)
values = P.BroadcastTo((num_events,) + self._batch_shape)(values)
values = self.cast(values, mstype.int32)
return values
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册