Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
929ef67b
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
929ef67b
编写于
5月 25, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 25, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1411 pylint warning clean
Merge pull request !1411 from liubuyu/master
上级
c8f69f5d
107794fa
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
61 addition
and
75 deletion
+61
-75
tests/st/control/test_multigraph_sink.py
tests/st/control/test_multigraph_sink.py
+7
-7
tests/st/control/test_while.py
tests/st/control/test_while.py
+2
-3
tests/st/mem_reuse/check_file.py
tests/st/mem_reuse/check_file.py
+3
-3
tests/st/mem_reuse/resnet.py
tests/st/mem_reuse/resnet.py
+11
-12
tests/st/mem_reuse/resnet_cifar_memreuse.py
tests/st/mem_reuse/resnet_cifar_memreuse.py
+4
-4
tests/st/mem_reuse/resnet_cifar_normal.py
tests/st/mem_reuse/resnet_cifar_normal.py
+4
-4
tests/st/networks/models/resnetv1_5.py
tests/st/networks/models/resnetv1_5.py
+11
-16
tests/st/summary/test_davinci_summary.py
tests/st/summary/test_davinci_summary.py
+1
-1
tests/st/tbe_networks/export_geir.py
tests/st/tbe_networks/export_geir.py
+1
-5
tests/st/tbe_networks/resnet.py
tests/st/tbe_networks/resnet.py
+11
-12
tests/st/tbe_networks/resnet_cifar.py
tests/st/tbe_networks/resnet_cifar.py
+3
-3
tests/st/tbe_networks/test_resnet_cifar_1p.py
tests/st/tbe_networks/test_resnet_cifar_1p.py
+2
-3
tests/st/tbe_networks/test_resnet_cifar_8p.py
tests/st/tbe_networks/test_resnet_cifar_8p.py
+1
-2
未找到文件。
tests/st/control/test_multigraph_sink.py
浏览文件 @
929ef67b
...
@@ -21,7 +21,7 @@ from mindspore.common import ms_function
...
@@ -21,7 +21,7 @@ from mindspore.common import ms_function
from
mindspore.common.tensor
import
Tensor
from
mindspore.common.tensor
import
Tensor
def
setup_module
(
module
):
def
setup_module
():
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"Ascend"
)
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"Ascend"
)
...
@@ -33,7 +33,7 @@ c5 = Tensor([14], mstype.int32)
...
@@ -33,7 +33,7 @@ c5 = Tensor([14], mstype.int32)
@
ms_function
@
ms_function
def
simple_if
(
x
,
y
,
z
):
def
simple_if
(
x
,
y
):
if
x
<
y
:
if
x
<
y
:
x
=
x
+
1
x
=
x
+
1
else
:
else
:
...
@@ -43,7 +43,7 @@ def simple_if(x, y, z):
...
@@ -43,7 +43,7 @@ def simple_if(x, y, z):
@
ms_function
@
ms_function
def
if_by_if
(
x
,
y
,
z
):
def
if_by_if
(
x
,
y
):
if
x
<
y
:
if
x
<
y
:
x
=
x
+
1
x
=
x
+
1
if
y
>
x
:
if
y
>
x
:
...
@@ -66,7 +66,7 @@ def if_in_if(x, y, z):
...
@@ -66,7 +66,7 @@ def if_in_if(x, y, z):
@
ms_function
@
ms_function
def
simple_while
(
x
,
y
,
z
):
def
simple_while
(
x
,
y
):
y
=
y
+
4
y
=
y
+
4
while
x
<
y
:
while
x
<
y
:
x
=
x
+
1
x
=
x
+
1
...
@@ -137,13 +137,13 @@ def while_in_while_in_while(x, y, z):
...
@@ -137,13 +137,13 @@ def while_in_while_in_while(x, y, z):
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
env_onecard
def
test_simple_if
():
def
test_simple_if
():
output
=
simple_if
(
c1
,
c2
,
c3
)
output
=
simple_if
(
c1
,
c2
)
expect
=
Tensor
([
6
],
mstype
.
int32
)
expect
=
Tensor
([
6
],
mstype
.
int32
)
assert
output
==
expect
assert
output
==
expect
def
test_if_by_if
():
def
test_if_by_if
():
output
=
if_by_if
(
c1
,
c2
,
c3
)
output
=
if_by_if
(
c1
,
c2
)
expect
=
Tensor
([
8
],
mstype
.
int32
)
expect
=
Tensor
([
8
],
mstype
.
int32
)
assert
output
==
expect
assert
output
==
expect
...
@@ -163,7 +163,7 @@ def test_if_in_if():
...
@@ -163,7 +163,7 @@ def test_if_in_if():
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
env_onecard
def
test_simple_while
():
def
test_simple_while
():
output
=
simple_while
(
c1
,
c2
,
c3
)
output
=
simple_while
(
c1
,
c2
)
expect
=
Tensor
([
21
],
mstype
.
int32
)
expect
=
Tensor
([
21
],
mstype
.
int32
)
assert
output
==
expect
assert
output
==
expect
...
...
tests/st/control/test_while.py
浏览文件 @
929ef67b
...
@@ -18,7 +18,7 @@ from mindspore.common import dtype as mstype
...
@@ -18,7 +18,7 @@ from mindspore.common import dtype as mstype
@
ms_function
@
ms_function
def
t1_while
(
x
,
y
,
z
):
def
t1_while
(
x
,
y
):
y
=
y
+
4
y
=
y
+
4
while
x
<
y
:
while
x
<
y
:
x
=
x
+
1
x
=
x
+
1
...
@@ -30,9 +30,8 @@ def test_net():
...
@@ -30,9 +30,8 @@ def test_net():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
c1
=
Tensor
([
2
],
mstype
.
int32
)
c1
=
Tensor
([
2
],
mstype
.
int32
)
c2
=
Tensor
([
14
],
mstype
.
int32
)
c2
=
Tensor
([
14
],
mstype
.
int32
)
c3
=
Tensor
([
1
],
mstype
.
int32
)
expect
=
Tensor
([
21
],
mstype
.
int32
)
expect
=
Tensor
([
21
],
mstype
.
int32
)
ret
=
t1_while
(
c1
,
c2
,
c3
)
ret
=
t1_while
(
c1
,
c2
)
assert
ret
==
expect
assert
ret
==
expect
...
...
tests/st/mem_reuse/check_file.py
浏览文件 @
929ef67b
...
@@ -19,8 +19,8 @@ curr_path = os.path.abspath(os.curdir)
...
@@ -19,8 +19,8 @@ curr_path = os.path.abspath(os.curdir)
file_memreuse
=
curr_path
+
"/mem_reuse_check/memreuse.ir"
file_memreuse
=
curr_path
+
"/mem_reuse_check/memreuse.ir"
file_normal
=
curr_path
+
"/mem_reuse_check/normal_mem.ir"
file_normal
=
curr_path
+
"/mem_reuse_check/normal_mem.ir"
checker
=
os
.
path
.
exists
(
file_memreuse
)
checker
=
os
.
path
.
exists
(
file_memreuse
)
assert
checker
==
True
assert
checker
,
True
checker
=
os
.
path
.
exists
(
file_normal
)
checker
=
os
.
path
.
exists
(
file_normal
)
assert
checker
==
True
assert
checker
,
True
checker
=
filecmp
.
cmp
(
file_memreuse
,
file_normal
)
checker
=
filecmp
.
cmp
(
file_memreuse
,
file_normal
)
assert
checker
==
True
assert
checker
,
True
tests/st/mem_reuse/resnet.py
浏览文件 @
929ef67b
...
@@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell):
...
@@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell):
def
__init__
(
self
,
def
__init__
(
self
,
in_channels
,
in_channels
,
out_channels
,
out_channels
,
stride
=
1
,
stride
=
1
):
down_sample
=
False
):
super
(
ResidualBlock
,
self
).
__init__
()
super
(
ResidualBlock
,
self
).
__init__
()
out_chls
=
out_channels
//
self
.
expansion
out_chls
=
out_channels
//
self
.
expansion
...
@@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell):
...
@@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell):
class
MakeLayer0
(
nn
.
Cell
):
class
MakeLayer0
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer0
,
self
).
__init__
()
super
(
MakeLayer0
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
1
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
1
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
stride
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
stride
)
...
@@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell):
...
@@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell):
class
MakeLayer1
(
nn
.
Cell
):
class
MakeLayer1
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer1
,
self
).
__init__
()
super
(
MakeLayer1
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell):
...
@@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell):
class
MakeLayer2
(
nn
.
Cell
):
class
MakeLayer2
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer2
,
self
).
__init__
()
super
(
MakeLayer2
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell):
...
@@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell):
class
MakeLayer3
(
nn
.
Cell
):
class
MakeLayer3
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer3
,
self
).
__init__
()
super
(
MakeLayer3
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell):
...
@@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell):
class
ResNet
(
nn
.
Cell
):
class
ResNet
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
num_classes
=
100
,
batch_size
=
32
):
def
__init__
(
self
,
block
,
num_classes
=
100
,
batch_size
=
32
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
()
self
.
batch_size
=
batch_size
self
.
batch_size
=
batch_size
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
...
@@ -271,10 +270,10 @@ class ResNet(nn.Cell):
...
@@ -271,10 +270,10 @@ class ResNet(nn.Cell):
self
.
relu
=
P
.
ReLU
()
self
.
relu
=
P
.
ReLU
()
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"same"
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"same"
)
self
.
layer1
=
MakeLayer0
(
block
,
layer_num
[
0
],
in_channels
=
64
,
out_channels
=
256
,
stride
=
1
)
self
.
layer1
=
MakeLayer0
(
block
,
in_channels
=
64
,
out_channels
=
256
,
stride
=
1
)
self
.
layer2
=
MakeLayer1
(
block
,
layer_num
[
1
],
in_channels
=
256
,
out_channels
=
512
,
stride
=
2
)
self
.
layer2
=
MakeLayer1
(
block
,
in_channels
=
256
,
out_channels
=
512
,
stride
=
2
)
self
.
layer3
=
MakeLayer2
(
block
,
layer_num
[
2
],
in_channels
=
512
,
out_channels
=
1024
,
stride
=
2
)
self
.
layer3
=
MakeLayer2
(
block
,
in_channels
=
512
,
out_channels
=
1024
,
stride
=
2
)
self
.
layer4
=
MakeLayer3
(
block
,
layer_num
[
3
],
in_channels
=
1024
,
out_channels
=
2048
,
stride
=
2
)
self
.
layer4
=
MakeLayer3
(
block
,
in_channels
=
1024
,
out_channels
=
2048
,
stride
=
2
)
self
.
pool
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
pool
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
squeeze
=
P
.
Squeeze
(
axis
=
(
2
,
3
))
self
.
squeeze
=
P
.
Squeeze
(
axis
=
(
2
,
3
))
...
@@ -298,4 +297,4 @@ class ResNet(nn.Cell):
...
@@ -298,4 +297,4 @@ class ResNet(nn.Cell):
def
resnet50
(
batch_size
,
num_classes
):
def
resnet50
(
batch_size
,
num_classes
):
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
6
,
3
],
num_classes
,
batch_size
)
return
ResNet
(
ResidualBlock
,
num_classes
,
batch_size
)
tests/st/mem_reuse/resnet_cifar_memreuse.py
浏览文件 @
929ef67b
...
@@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell):
...
@@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell):
def
construct
(
self
,
logits
,
label
):
def
construct
(
self
,
logits
,
label
):
label
=
self
.
one_hot
(
label
,
F
.
shape
(
logits
)[
1
],
self
.
one
,
self
.
zero
)
label
=
self
.
one_hot
(
label
,
F
.
shape
(
logits
)[
1
],
self
.
one
,
self
.
zero
)
loss
=
self
.
cross_entropy
(
logits
,
label
)[
0
]
loss
_func
=
self
.
cross_entropy
(
logits
,
label
)[
0
]
loss
=
self
.
mean
(
loss
,
(
-
1
,))
loss
_func
=
self
.
mean
(
loss_func
,
(
-
1
,))
return
loss
return
loss
_func
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
@@ -146,4 +146,4 @@ if __name__ == '__main__':
...
@@ -146,4 +146,4 @@ if __name__ == '__main__':
res
=
model
.
eval
(
eval_dataset
)
res
=
model
.
eval
(
eval_dataset
)
print
(
"result: "
,
res
)
print
(
"result: "
,
res
)
checker
=
os
.
path
.
exists
(
"./memreuse.ir"
)
checker
=
os
.
path
.
exists
(
"./memreuse.ir"
)
assert
checker
==
True
assert
checker
,
True
tests/st/mem_reuse/resnet_cifar_normal.py
浏览文件 @
929ef67b
...
@@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell):
...
@@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell):
def
construct
(
self
,
logits
,
label
):
def
construct
(
self
,
logits
,
label
):
label
=
self
.
one_hot
(
label
,
F
.
shape
(
logits
)[
1
],
self
.
one
,
self
.
zero
)
label
=
self
.
one_hot
(
label
,
F
.
shape
(
logits
)[
1
],
self
.
one
,
self
.
zero
)
loss
=
self
.
cross_entropy
(
logits
,
label
)[
0
]
loss
_func
=
self
.
cross_entropy
(
logits
,
label
)[
0
]
loss
=
self
.
mean
(
loss
,
(
-
1
,))
loss
_func
=
self
.
mean
(
loss_func
,
(
-
1
,))
return
loss
return
loss
_func
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
@@ -146,4 +146,4 @@ if __name__ == '__main__':
...
@@ -146,4 +146,4 @@ if __name__ == '__main__':
res
=
model
.
eval
(
eval_dataset
)
res
=
model
.
eval
(
eval_dataset
)
print
(
"result: "
,
res
)
print
(
"result: "
,
res
)
checker
=
os
.
path
.
exists
(
"./normal_memreuse.ir"
)
checker
=
os
.
path
.
exists
(
"./normal_memreuse.ir"
)
assert
checker
==
True
assert
checker
,
True
tests/st/networks/models/resnetv1_5.py
浏览文件 @
929ef67b
...
@@ -95,8 +95,7 @@ class ResidualBlock(nn.Cell):
...
@@ -95,8 +95,7 @@ class ResidualBlock(nn.Cell):
def
__init__
(
self
,
def
__init__
(
self
,
in_channels
,
in_channels
,
out_channels
,
out_channels
,
stride
=
1
,
stride
=
1
):
down_sample
=
False
):
super
(
ResidualBlock
,
self
).
__init__
()
super
(
ResidualBlock
,
self
).
__init__
()
out_chls
=
out_channels
//
self
.
expansion
out_chls
=
out_channels
//
self
.
expansion
...
@@ -184,7 +183,7 @@ class ResidualBlockWithDown(nn.Cell):
...
@@ -184,7 +183,7 @@ class ResidualBlockWithDown(nn.Cell):
class
MakeLayer0
(
nn
.
Cell
):
class
MakeLayer0
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer0
,
self
).
__init__
()
super
(
MakeLayer0
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
1
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
1
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
stride
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
stride
)
...
@@ -200,7 +199,7 @@ class MakeLayer0(nn.Cell):
...
@@ -200,7 +199,7 @@ class MakeLayer0(nn.Cell):
class
MakeLayer1
(
nn
.
Cell
):
class
MakeLayer1
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer1
,
self
).
__init__
()
super
(
MakeLayer1
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -218,7 +217,7 @@ class MakeLayer1(nn.Cell):
...
@@ -218,7 +217,7 @@ class MakeLayer1(nn.Cell):
class
MakeLayer2
(
nn
.
Cell
):
class
MakeLayer2
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer2
,
self
).
__init__
()
super
(
MakeLayer2
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -240,7 +239,7 @@ class MakeLayer2(nn.Cell):
...
@@ -240,7 +239,7 @@ class MakeLayer2(nn.Cell):
class
MakeLayer3
(
nn
.
Cell
):
class
MakeLayer3
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer3
,
self
).
__init__
()
super
(
MakeLayer3
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -256,7 +255,7 @@ class MakeLayer3(nn.Cell):
...
@@ -256,7 +255,7 @@ class MakeLayer3(nn.Cell):
class
ResNet
(
nn
.
Cell
):
class
ResNet
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
num_classes
=
100
,
batch_size
=
32
):
def
__init__
(
self
,
block
,
num_classes
=
100
,
batch_size
=
32
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
()
self
.
batch_size
=
batch_size
self
.
batch_size
=
batch_size
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
...
@@ -267,14 +266,10 @@ class ResNet(nn.Cell):
...
@@ -267,14 +266,10 @@ class ResNet(nn.Cell):
self
.
relu
=
P
.
ReLU
()
self
.
relu
=
P
.
ReLU
()
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"SAME"
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"SAME"
)
self
.
layer1
=
MakeLayer0
(
self
.
layer1
=
MakeLayer0
(
block
,
in_channels
=
64
,
out_channels
=
256
,
stride
=
1
)
block
,
layer_num
[
0
],
in_channels
=
64
,
out_channels
=
256
,
stride
=
1
)
self
.
layer2
=
MakeLayer1
(
block
,
in_channels
=
256
,
out_channels
=
512
,
stride
=
2
)
self
.
layer2
=
MakeLayer1
(
self
.
layer3
=
MakeLayer2
(
block
,
in_channels
=
512
,
out_channels
=
1024
,
stride
=
2
)
block
,
layer_num
[
1
],
in_channels
=
256
,
out_channels
=
512
,
stride
=
2
)
self
.
layer4
=
MakeLayer3
(
block
,
in_channels
=
1024
,
out_channels
=
2048
,
stride
=
2
)
self
.
layer3
=
MakeLayer2
(
block
,
layer_num
[
2
],
in_channels
=
512
,
out_channels
=
1024
,
stride
=
2
)
self
.
layer4
=
MakeLayer3
(
block
,
layer_num
[
3
],
in_channels
=
1024
,
out_channels
=
2048
,
stride
=
2
)
self
.
pool
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
pool
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
fc
=
fc_with_initialize
(
512
*
block
.
expansion
,
num_classes
)
self
.
fc
=
fc_with_initialize
(
512
*
block
.
expansion
,
num_classes
)
...
@@ -298,4 +293,4 @@ class ResNet(nn.Cell):
...
@@ -298,4 +293,4 @@ class ResNet(nn.Cell):
def
resnet50
(
batch_size
,
num_classes
):
def
resnet50
(
batch_size
,
num_classes
):
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
6
,
3
],
num_classes
,
batch_size
)
return
ResNet
(
ResidualBlock
,
num_classes
,
batch_size
)
tests/st/summary/test_davinci_summary.py
浏览文件 @
929ef67b
...
@@ -18,7 +18,7 @@ import numpy as np
...
@@ -18,7 +18,7 @@ import numpy as np
from
apply_momentum
import
ApplyMomentum
from
apply_momentum
import
ApplyMomentum
import
mindspore.context
as
context
import
mindspore.context
as
context
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.nn
as
wrap
from
mindspore.nn
import
wrap
from
mindspore
import
Tensor
,
Model
from
mindspore
import
Tensor
,
Model
from
mindspore.common.api
import
ms_function
from
mindspore.common.api
import
ms_function
from
mindspore.nn.loss
import
SoftmaxCrossEntropyWithLogits
from
mindspore.nn.loss
import
SoftmaxCrossEntropyWithLogits
...
...
tests/st/tbe_networks/export_geir.py
浏览文件 @
929ef67b
...
@@ -13,12 +13,10 @@
...
@@ -13,12 +13,10 @@
# limitations under the License.
# limitations under the License.
# ============================================================================
# ============================================================================
import
numpy
as
np
import
numpy
as
np
from
resnet_torch
import
resnet50
from
resnet_torch
import
resnet50
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore.train.serialization
import
save
,
load
,
_check_filedir_or_create
,
_chg_model_file_name_if_same_exist
,
\
from
mindspore.train.serialization
import
context
,
export
_read_file_last_line
,
context
,
export
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
...
@@ -26,6 +24,4 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
...
@@ -26,6 +24,4 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def
test_resnet50_export
(
batch_size
=
1
,
num_classes
=
5
):
def
test_resnet50_export
(
batch_size
=
1
,
num_classes
=
5
):
input_np
=
np
.
random
.
uniform
(
0.0
,
1.0
,
size
=
[
batch_size
,
3
,
224
,
224
]).
astype
(
np
.
float32
)
input_np
=
np
.
random
.
uniform
(
0.0
,
1.0
,
size
=
[
batch_size
,
3
,
224
,
224
]).
astype
(
np
.
float32
)
net
=
resnet50
(
batch_size
,
num_classes
)
net
=
resnet50
(
batch_size
,
num_classes
)
# param_dict = load_checkpoint("./resnet50-1_103.ckpt")
# load_param_into_net(net, param_dict)
export
(
net
,
Tensor
(
input_np
),
file_name
=
"./me_resnet50.pb"
,
file_format
=
"GEIR"
)
export
(
net
,
Tensor
(
input_np
),
file_name
=
"./me_resnet50.pb"
,
file_format
=
"GEIR"
)
tests/st/tbe_networks/resnet.py
浏览文件 @
929ef67b
...
@@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell):
...
@@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell):
def
__init__
(
self
,
def
__init__
(
self
,
in_channels
,
in_channels
,
out_channels
,
out_channels
,
stride
=
1
,
stride
=
1
):
down_sample
=
False
):
super
(
ResidualBlock
,
self
).
__init__
()
super
(
ResidualBlock
,
self
).
__init__
()
out_chls
=
out_channels
//
self
.
expansion
out_chls
=
out_channels
//
self
.
expansion
...
@@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell):
...
@@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell):
class
MakeLayer0
(
nn
.
Cell
):
class
MakeLayer0
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer0
,
self
).
__init__
()
super
(
MakeLayer0
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
1
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
1
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
stride
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
stride
)
...
@@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell):
...
@@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell):
class
MakeLayer1
(
nn
.
Cell
):
class
MakeLayer1
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer1
,
self
).
__init__
()
super
(
MakeLayer1
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell):
...
@@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell):
class
MakeLayer2
(
nn
.
Cell
):
class
MakeLayer2
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer2
,
self
).
__init__
()
super
(
MakeLayer2
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell):
...
@@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell):
class
MakeLayer3
(
nn
.
Cell
):
class
MakeLayer3
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
in_channels
,
out_channels
,
stride
):
def
__init__
(
self
,
block
,
in_channels
,
out_channels
,
stride
):
super
(
MakeLayer3
,
self
).
__init__
()
super
(
MakeLayer3
,
self
).
__init__
()
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
a
=
ResidualBlockWithDown
(
in_channels
,
out_channels
,
stride
=
stride
,
down_sample
=
True
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
self
.
b
=
block
(
out_channels
,
out_channels
,
stride
=
1
)
...
@@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell):
...
@@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell):
class
ResNet
(
nn
.
Cell
):
class
ResNet
(
nn
.
Cell
):
def
__init__
(
self
,
block
,
layer_num
,
num_classes
=
100
,
batch_size
=
32
):
def
__init__
(
self
,
block
,
num_classes
=
100
,
batch_size
=
32
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
()
self
.
batch_size
=
batch_size
self
.
batch_size
=
batch_size
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
...
@@ -271,10 +270,10 @@ class ResNet(nn.Cell):
...
@@ -271,10 +270,10 @@ class ResNet(nn.Cell):
self
.
relu
=
P
.
ReLU
()
self
.
relu
=
P
.
ReLU
()
self
.
maxpool
=
P
.
MaxPoolWithArgmax
(
ksize
=
3
,
strides
=
2
,
padding
=
"SAME"
)
self
.
maxpool
=
P
.
MaxPoolWithArgmax
(
ksize
=
3
,
strides
=
2
,
padding
=
"SAME"
)
self
.
layer1
=
MakeLayer0
(
block
,
layer_num
[
0
],
in_channels
=
64
,
out_channels
=
256
,
stride
=
1
)
self
.
layer1
=
MakeLayer0
(
block
,
in_channels
=
64
,
out_channels
=
256
,
stride
=
1
)
self
.
layer2
=
MakeLayer1
(
block
,
layer_num
[
1
],
in_channels
=
256
,
out_channels
=
512
,
stride
=
2
)
self
.
layer2
=
MakeLayer1
(
block
,
in_channels
=
256
,
out_channels
=
512
,
stride
=
2
)
self
.
layer3
=
MakeLayer2
(
block
,
layer_num
[
2
],
in_channels
=
512
,
out_channels
=
1024
,
stride
=
2
)
self
.
layer3
=
MakeLayer2
(
block
,
in_channels
=
512
,
out_channels
=
1024
,
stride
=
2
)
self
.
layer4
=
MakeLayer3
(
block
,
layer_num
[
3
],
in_channels
=
1024
,
out_channels
=
2048
,
stride
=
2
)
self
.
layer4
=
MakeLayer3
(
block
,
in_channels
=
1024
,
out_channels
=
2048
,
stride
=
2
)
self
.
pool
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
pool
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
squeeze
=
P
.
Squeeze
(
axis
=
(
2
,
3
))
self
.
squeeze
=
P
.
Squeeze
(
axis
=
(
2
,
3
))
...
@@ -298,4 +297,4 @@ class ResNet(nn.Cell):
...
@@ -298,4 +297,4 @@ class ResNet(nn.Cell):
def
resnet50
(
batch_size
,
num_classes
):
def
resnet50
(
batch_size
,
num_classes
):
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
6
,
3
],
num_classes
,
batch_size
)
return
ResNet
(
ResidualBlock
,
num_classes
,
batch_size
)
tests/st/tbe_networks/resnet_cifar.py
浏览文件 @
929ef67b
...
@@ -116,9 +116,9 @@ class CrossEntropyLoss(nn.Cell):
...
@@ -116,9 +116,9 @@ class CrossEntropyLoss(nn.Cell):
def
construct
(
self
,
logits
,
label
):
def
construct
(
self
,
logits
,
label
):
label
=
self
.
one_hot
(
label
,
F
.
shape
(
logits
)[
1
],
self
.
one
,
self
.
zero
)
label
=
self
.
one_hot
(
label
,
F
.
shape
(
logits
)[
1
],
self
.
one
,
self
.
zero
)
loss
=
self
.
cross_entropy
(
logits
,
label
)[
0
]
loss
_func
=
self
.
cross_entropy
(
logits
,
label
)[
0
]
loss
=
self
.
mean
(
loss
,
(
-
1
,))
loss
_func
=
self
.
mean
(
loss_func
,
(
-
1
,))
return
loss
return
loss
_func
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
tests/st/tbe_networks/test_resnet_cifar_1p.py
浏览文件 @
929ef67b
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
import
os
import
os
import
random
import
random
import
time
import
pytest
import
pytest
import
numpy
as
np
import
numpy
as
np
from
resnet
import
resnet50
from
resnet
import
resnet50
...
@@ -30,9 +30,8 @@ from mindspore import Tensor
...
@@ -30,9 +30,8 @@ from mindspore import Tensor
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.nn.optim.momentum
import
Momentum
from
mindspore.nn.optim.momentum
import
Momentum
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
Callback
from
mindspore.train.callback
import
Callback
from
mindspore.train.model
import
Model
from
mindspore.train.model
import
Model
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
random
.
seed
(
1
)
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
...
...
tests/st/tbe_networks/test_resnet_cifar_8p.py
浏览文件 @
929ef67b
...
@@ -15,11 +15,10 @@
...
@@ -15,11 +15,10 @@
import
os
import
os
import
random
import
random
from
multiprocessing
import
Process
,
Queue
import
numpy
as
np
import
numpy
as
np
import
pytest
import
pytest
from
multiprocessing
import
Process
,
Queue
from
resnet
import
resnet50
from
resnet
import
resnet50
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
import
mindspore.dataset
as
ds
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.c_transforms
as
C
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录