Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
91306cbd
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91306cbd
编写于
6月 23, 2020
作者:
Y
yujianfeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ut for cpu kernel of sparse optimizer
上级
283e6014
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
683 addition
and
18 deletion
+683
-18
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
+3
-2
tests/st/ops/cpu/test_sparse_apply_adam_op.py
tests/st/ops/cpu/test_sparse_apply_adam_op.py
+13
-3
tests/st/ops/cpu/test_sparse_apply_ftrl_op.py
tests/st/ops/cpu/test_sparse_apply_ftrl_op.py
+13
-8
tests/st/ops/cpu/test_sparse_apply_proximal_adagrad_op.py
tests/st/ops/cpu/test_sparse_apply_proximal_adagrad_op.py
+13
-3
tests/ut/cpp/CMakeLists.txt
tests/ut/cpp/CMakeLists.txt
+6
-0
tests/ut/cpp/kernel/common_utils_test.cc
tests/ut/cpp/kernel/common_utils_test.cc
+2
-2
tests/ut/cpp/kernel/cpu/sparse_apply_adam_cpu_kernel_test.cc
tests/ut/cpp/kernel/cpu/sparse_apply_adam_cpu_kernel_test.cc
+166
-0
tests/ut/cpp/kernel/cpu/sparse_apply_ftrl_cpu_kernel_test.cc
tests/ut/cpp/kernel/cpu/sparse_apply_ftrl_cpu_kernel_test.cc
+154
-0
tests/ut/cpp/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel_test.cc
.../cpp/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel_test.cc
+162
-0
tests/ut/cpp/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel_test.cc
...rnel/cpu/sparse_apply_proximal_adagrad_cpu_kernel_test.cc
+151
-0
未找到文件。
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
浏览文件 @
91306cbd
...
...
@@ -81,6 +81,7 @@ void SparseApplyAdamCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node)
MS_EXCEPTION_IF_NULL
(
kernel_node
);
workspace_size_list_
.
emplace_back
(
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
workspace_size_list_
.
emplace_back
(
indices_size_
*
sizeof
(
int
));
workspace_size_list_
.
emplace_back
(
var_first_dim_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
}
void
SparseApplyAdamCPUKernel
::
InitKernel
(
const
CNodePtr
&
kernel_node
)
{
...
...
@@ -141,6 +142,7 @@ bool SparseApplyAdamCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
10
]
->
addr
);
auto
new_grad
=
reinterpret_cast
<
float
*>
(
workspace
[
0
]
->
addr
);
auto
new_indices
=
reinterpret_cast
<
int
*>
(
workspace
[
1
]
->
addr
);
auto
m_t
=
reinterpret_cast
<
float
*>
(
workspace
[
2
]
->
addr
);
SparseGradient
unique_sparse_grad
({
new_grad
,
new_indices
,
indices_size_
});
ReduceSparseGradient
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
...
...
@@ -156,8 +158,7 @@ bool SparseApplyAdamCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
const
size_t
kThreadNum
=
16
;
MultiThreadCompute
(
ComputeMomentum
,
&
input_params
,
kThreadNum
,
total_dim_size
);
std
::
vector
<
float
>
m_t
(
m
,
m
+
total_dim_size
);
input_params
.
m_t_
=
m_t
.
data
();
input_params
.
m_t_
=
m_t
;
input_params
.
use_nesterov_
=
use_nesterov_
;
input_params
.
sparse_grad_
=
unique_sparse_grad
;
input_params
.
var_first_dim_size_
=
var_first_dim_size_
;
...
...
tests/st/ops/cpu/test_sparse_apply_adam_op.py
浏览文件 @
91306cbd
...
...
@@ -44,10 +44,20 @@ class Net(nn.Cell):
def
test_net
():
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
gradient
=
Tensor
(
np
.
ones
([
3
,
3
,
3
]
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
sparse_apply_adam
=
Net
()
output
=
sparse_apply_adam
(
gradient
,
indices
)
print
(
output
[
0
].
asnumpy
())
sparse_apply_adam
(
gradient
,
indices
)
print
(
sparse_apply_adam
.
var
.
default_input
)
expect_var
=
np
.
array
([[[
0.9996838
,
0.9996838
,
0.9996838
],
[
0.9996838
,
0.9996838
,
0.9996838
],
[
0.9996838
,
0.9996838
,
0.9996838
]],
[[
0.9996838
,
0.9996838
,
0.9996838
],
[
0.9996838
,
0.9996838
,
0.9996838
],
[
0.9996838
,
0.9996838
,
0.9996838
]],
[[
0.9996838
,
0.9996838
,
0.9996838
],
[
0.9996838
,
0.9996838
,
0.9996838
],
[
0.9996838
,
0.9996838
,
0.9996838
]]]).
astype
(
np
.
float32
)
assert
np
.
all
(
sparse_apply_adam
.
var
.
default_input
.
asnumpy
()
==
expect_var
)
tests/st/ops/cpu/test_sparse_apply_ftrl_op.py
浏览文件 @
91306cbd
...
...
@@ -36,15 +36,20 @@ class Net(nn.Cell):
def
test_net
():
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
gradient
=
Tensor
(
np
.
ones
([
3
,
3
,
3
]
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
sparse_apply_ftrl
=
Net
()
output
=
sparse_apply_ftrl
(
gradient
,
indices
)
print
(
output
[
0
].
asnumpy
())
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sparse_apply_ftrl
=
Net
()
output
=
sparse_apply_ftrl
(
gradient
,
indices
)
print
(
output
[
0
].
asnumpy
())
sparse_apply_ftrl
(
gradient
,
indices
)
print
(
sparse_apply_ftrl
.
var
.
default_input
)
expect_var
=
np
.
array
([[[
0.291479
,
0.291479
,
0.291479
],
[
0.291479
,
0.291479
,
0.291479
],
[
0.291479
,
0.291479
,
0.291479
]],
[[
0.291479
,
0.291479
,
0.291479
],
[
0.291479
,
0.291479
,
0.291479
],
[
0.291479
,
0.291479
,
0.291479
]],
[[
0.291479
,
0.291479
,
0.291479
],
[
0.291479
,
0.291479
,
0.291479
],
[
0.291479
,
0.291479
,
0.291479
]]]).
astype
(
np
.
float32
)
assert
np
.
all
(
sparse_apply_ftrl
.
var
.
default_input
.
asnumpy
()
==
expect_var
)
tests/st/ops/cpu/test_sparse_apply_proximal_adagrad_op.py
浏览文件 @
91306cbd
...
...
@@ -38,10 +38,20 @@ class Net(nn.Cell):
def
test_net
():
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
gradient
=
Tensor
(
np
.
ones
([
3
,
3
,
3
]
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
sparse_apply_proximal_adagrad
=
Net
()
output
=
sparse_apply_proximal_adagrad
(
gradient
,
indices
)
print
(
output
[
0
].
asnumpy
())
sparse_apply_proximal_adagrad
(
gradient
,
indices
)
print
(
sparse_apply_proximal_adagrad
.
var
.
default_input
)
expect_var
=
np
.
array
([[[
0.9929289
,
0.9929289
,
0.9929289
],
[
0.9929289
,
0.9929289
,
0.9929289
],
[
0.9929289
,
0.9929289
,
0.9929289
]],
[[
0.9929289
,
0.9929289
,
0.9929289
],
[
0.9929289
,
0.9929289
,
0.9929289
],
[
0.9929289
,
0.9929289
,
0.9929289
]],
[[
0.9929289
,
0.9929289
,
0.9929289
],
[
0.9929289
,
0.9929289
,
0.9929289
],
[
0.9929289
,
0.9929289
,
0.9929289
]]]).
astype
(
np
.
float32
)
assert
np
.
all
(
sparse_apply_proximal_adagrad
.
var
.
default_input
.
asnumpy
()
==
expect_var
)
tests/ut/cpp/CMakeLists.txt
浏览文件 @
91306cbd
...
...
@@ -104,6 +104,12 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"../../../mindspore/ccsrc/predict/converter/attr_utils/*.cc"
"../../../mindspore/ccsrc/predict/converter/lite_model/*.cc"
"../../../mindspore/ccsrc/predict/converter/lite_model/operations/*.cc"
"../../../mindspore/ccsrc/kernel/cpu/cpu_kernel.cc"
"../../../mindspore/ccsrc/kernel/cpu/cpu_kernel_factory.cc"
"../../../mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc"
"../../../mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc"
"../../../mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc"
"../../../mindspore/ccsrc/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/debug/dump_proto.cc"
)
...
...
tests/ut/cpp/kernel/common_utils_test.cc
浏览文件 @
91306cbd
...
...
@@ -49,7 +49,7 @@ TEST_F(CommonUtilTest, DeduplicateIndexedSlicesTest1) {
std
::
vector
<
int
>
unique_indices
(
3
);
std
::
vector
<
float
>
summed_grad
(
6
);
SparseGradient
unique_grad
({
summed_grad
.
data
(),
unique_indices
.
data
(),
0
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
.
data
(),
indices
.
data
(),
6
}),
&
unique_grad
,
6
,
2
);
ReduceSparseGradient
(
SparseGradient
({
grad
.
data
(),
indices
.
data
(),
6
}),
&
unique_grad
,
6
,
2
);
EXPECT_EQ
(
unique_grad
.
indices_size_
,
3
);
EXPECT_EQ
(
unique_indices
,
std
::
vector
<
int
>
({
0
,
1
,
3
}));
/* 10 13
...
...
@@ -83,7 +83,7 @@ TEST_F(CommonUtilTest, DeduplicateIndexedSlicesTest2) {
std
::
vector
<
int
>
unique_indices
(
2
);
std
::
vector
<
float
>
summed_grad
(
4
);
SparseGradient
unique_grad
({
summed_grad
.
data
(),
unique_indices
.
data
(),
0
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
.
data
(),
indices
.
data
(),
6
}),
&
unique_grad
,
6
,
2
);
ReduceSparseGradient
(
SparseGradient
({
grad
.
data
(),
indices
.
data
(),
6
}),
&
unique_grad
,
6
,
2
);
EXPECT_EQ
(
unique_grad
.
indices_size_
,
2
);
EXPECT_EQ
(
unique_indices
,
std
::
vector
<
int
>
({
0
,
1
}));
/* 10 13
...
...
tests/ut/cpp/kernel/cpu/sparse_apply_adam_cpu_kernel_test.cc
0 → 100644
浏览文件 @
91306cbd
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "common/common_test.h"
#define private public
#define protected public
#include "kernel/cpu/sparse_apply_adam_cpu_kernel.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyAdamCpuKernelTest
:
public
UT
::
Common
{
public:
SparseApplyAdamCpuKernelTest
()
:
sparse_adam_
(
std
::
make_shared
<
SparseApplyAdamCPUKernel
>
())
{}
void
SetUp
()
override
{
var_
.
clear
();
m_
.
clear
();
v_
.
clear
();
grad_
.
clear
();
inputs_
.
clear
();
workspace_
.
clear
();
outputs_
.
clear
();
}
AddressPtr
CreateKernelAddress
(
void
*
addr
)
{
auto
kernel_addr
=
std
::
make_shared
<
Address
>
();
kernel_addr
->
addr
=
addr
;
return
kernel_addr
;
}
void
CreateInputAddress
(
std
::
vector
<
int
>
&
indices
)
{
inputs_
.
push_back
(
CreateKernelAddress
(
var_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
m_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
v_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta1_power_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta2_power_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
lr_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta1_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta2_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
epsilon_
));
inputs_
.
push_back
(
CreateKernelAddress
(
grad_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
indices
.
data
()));
}
void
CreateWorkspaceAddress
(
std
::
vector
<
float
>
&
new_grad
,
std
::
vector
<
int
>
&
new_indices
,
std
::
vector
<
float
>
&
m_t
)
{
workspace_
.
push_back
(
CreateKernelAddress
(
new_grad
.
data
()));
workspace_
.
push_back
(
CreateKernelAddress
(
new_indices
.
data
()));
workspace_
.
push_back
(
CreateKernelAddress
(
m_t
.
data
()));
}
std
::
vector
<
float
>
var_
;
std
::
vector
<
float
>
m_
;
std
::
vector
<
float
>
v_
;
std
::
vector
<
float
>
grad_
;
std
::
vector
<
AddressPtr
>
inputs_
;
std
::
vector
<
AddressPtr
>
workspace_
;
std
::
vector
<
AddressPtr
>
outputs_
;
std
::
shared_ptr
<
SparseApplyAdamCPUKernel
>
sparse_adam_
;
float
beta1_power_
=
0.9
;
float
beta2_power_
=
0.999
;
float
lr_
=
0.001
;
float
beta1_
=
0.9
;
float
beta2_
=
0.999
;
float
epsilon_
=
1e-8
;
};
TEST_F
(
SparseApplyAdamCpuKernelTest
,
dense_test
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
m_
.
push_back
(
1.0
);
v_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_adam_
->
indices_size_
=
3
;
sparse_adam_
->
var_first_dim_size_
=
3
;
sparse_adam_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
1
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
std
::
vector
<
float
>
m_t
(
3
*
3
*
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
,
m_t
);
sparse_adam_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyAdamCpuKernelTest
,
sparse_test1
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
m_
.
push_back
(
1.0
);
v_
.
push_back
(
1.0
);
}
for
(
size_t
i
=
0
;
i
<
2
*
3
*
3
;
++
i
)
{
grad_
.
push_back
(
1.0
);
}
sparse_adam_
->
indices_size_
=
2
;
sparse_adam_
->
var_first_dim_size_
=
3
;
sparse_adam_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
std
::
vector
<
float
>
m_t
(
3
*
3
*
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
,
m_t
);
sparse_adam_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999715
)
<
1e-6
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyAdamCpuKernelTest
,
sparse_test2
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
m_
.
push_back
(
1.0
);
v_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_adam_
->
indices_size_
=
3
;
sparse_adam_
->
var_first_dim_size_
=
3
;
sparse_adam_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
2
,
2
,
1
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
std
::
vector
<
float
>
m_t
(
3
*
3
*
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
,
m_t
);
sparse_adam_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999715
)
<
1e-6
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999653
)
<
1e-6
);
}
}
}
// namespace kernel
}
// namespace mindspore
tests/ut/cpp/kernel/cpu/sparse_apply_ftrl_cpu_kernel_test.cc
0 → 100644
浏览文件 @
91306cbd
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "common/common_test.h"
#define private public
#define protected public
#include "kernel/cpu/sparse_apply_ftrl_cpu_kernel.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyFtrlCpuKernelTest
:
public
UT
::
Common
{
public:
SparseApplyFtrlCpuKernelTest
()
:
sparse_ftrl_
(
std
::
make_shared
<
SparseApplyFtrlCPUKernel
>
())
{}
void
SetUp
()
override
{
sparse_ftrl_
->
lr_
=
0.001
;
sparse_ftrl_
->
l1_
=
0.0
;
sparse_ftrl_
->
l2_
=
0.0
;
sparse_ftrl_
->
lr_power_
=
-
0.5
;
var_
.
clear
();
accum_
.
clear
();
linear_
.
clear
();
grad_
.
clear
();
inputs_
.
clear
();
workspace_
.
clear
();
outputs_
.
clear
();
}
AddressPtr
CreateKernelAddress
(
void
*
addr
)
{
auto
kernel_addr
=
std
::
make_shared
<
Address
>
();
kernel_addr
->
addr
=
addr
;
return
kernel_addr
;
}
void
CreateInputAddress
(
std
::
vector
<
int
>
&
indices
)
{
inputs_
.
push_back
(
CreateKernelAddress
(
var_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
accum_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
linear_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
grad_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
indices
.
data
()));
}
void
CreateWorkspaceAddress
(
std
::
vector
<
float
>
&
new_grad
,
std
::
vector
<
int
>
&
new_indices
)
{
workspace_
.
push_back
(
CreateKernelAddress
(
new_grad
.
data
()));
workspace_
.
push_back
(
CreateKernelAddress
(
new_indices
.
data
()));
}
std
::
vector
<
float
>
var_
;
std
::
vector
<
float
>
accum_
;
std
::
vector
<
float
>
linear_
;
std
::
vector
<
float
>
grad_
;
std
::
vector
<
AddressPtr
>
inputs_
;
std
::
vector
<
AddressPtr
>
workspace_
;
std
::
vector
<
AddressPtr
>
outputs_
;
std
::
shared_ptr
<
SparseApplyFtrlCPUKernel
>
sparse_ftrl_
;
};
TEST_F
(
SparseApplyFtrlCpuKernelTest
,
dense_test
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
accum_
.
push_back
(
1.0
);
linear_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_ftrl_
->
indices_size_
=
3
;
sparse_ftrl_
->
var_first_dim_size_
=
3
;
sparse_ftrl_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
1
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_ftrl_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.291479
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyFtrlCpuKernelTest
,
sparse_test1
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
accum_
.
push_back
(
1.0
);
linear_
.
push_back
(
1.0
);
}
for
(
size_t
i
=
0
;
i
<
2
*
3
*
3
;
++
i
)
{
grad_
.
push_back
(
1.0
);
}
sparse_ftrl_
->
indices_size_
=
2
;
sparse_ftrl_
->
var_first_dim_size_
=
3
;
sparse_ftrl_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_ftrl_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.291479
)
<
1e-6
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_EQ
(
var_
[
i
],
1.0
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.291479
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyFtrlCpuKernelTest
,
sparse_test2
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
accum_
.
push_back
(
1.0
);
linear_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_ftrl_
->
indices_size_
=
3
;
sparse_ftrl_
->
var_first_dim_size_
=
3
;
sparse_ftrl_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
2
,
2
,
1
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_ftrl_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_EQ
(
var_
[
i
],
1.0
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.291479
)
<
1e-6
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.551445
)
<
1e-6
);
}
}
}
// namespace kernel
}
// namespace mindspore
tests/ut/cpp/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel_test.cc
0 → 100644
浏览文件 @
91306cbd
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "common/common_test.h"
#define private public
#define protected public
#include "kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyLazyAdamCpuKernelTest
:
public
UT
::
Common
{
public:
SparseApplyLazyAdamCpuKernelTest
()
:
sparse_lazy_adam_
(
std
::
make_shared
<
SparseApplyLazyAdamCPUKernel
>
())
{}
void
SetUp
()
override
{
var_
.
clear
();
m_
.
clear
();
v_
.
clear
();
grad_
.
clear
();
inputs_
.
clear
();
workspace_
.
clear
();
outputs_
.
clear
();
}
AddressPtr
CreateKernelAddress
(
void
*
addr
)
{
auto
kernel_addr
=
std
::
make_shared
<
Address
>
();
kernel_addr
->
addr
=
addr
;
return
kernel_addr
;
}
void
CreateInputAddress
(
std
::
vector
<
int
>
&
indices
)
{
inputs_
.
push_back
(
CreateKernelAddress
(
var_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
m_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
v_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta1_power_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta2_power_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
lr_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta1_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
beta2_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
epsilon_
));
inputs_
.
push_back
(
CreateKernelAddress
(
grad_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
indices
.
data
()));
}
void
CreateWorkspaceAddress
(
std
::
vector
<
float
>
&
new_grad
,
std
::
vector
<
int
>
&
new_indices
)
{
workspace_
.
push_back
(
CreateKernelAddress
(
new_grad
.
data
()));
workspace_
.
push_back
(
CreateKernelAddress
(
new_indices
.
data
()));
}
std
::
vector
<
float
>
var_
;
std
::
vector
<
float
>
m_
;
std
::
vector
<
float
>
v_
;
std
::
vector
<
float
>
grad_
;
std
::
vector
<
AddressPtr
>
inputs_
;
std
::
vector
<
AddressPtr
>
workspace_
;
std
::
vector
<
AddressPtr
>
outputs_
;
std
::
shared_ptr
<
SparseApplyLazyAdamCPUKernel
>
sparse_lazy_adam_
;
float
beta1_power_
=
0.9
;
float
beta2_power_
=
0.999
;
float
lr_
=
0.001
;
float
beta1_
=
0.9
;
float
beta2_
=
0.999
;
float
epsilon_
=
1e-8
;
};
TEST_F
(
SparseApplyLazyAdamCpuKernelTest
,
dense_test
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
m_
.
push_back
(
1.0
);
v_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_lazy_adam_
->
indices_size_
=
3
;
sparse_lazy_adam_
->
var_first_dim_size_
=
3
;
sparse_lazy_adam_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
1
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_lazy_adam_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyLazyAdamCpuKernelTest
,
sparse_test1
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
m_
.
push_back
(
1.0
);
v_
.
push_back
(
1.0
);
}
for
(
size_t
i
=
0
;
i
<
2
*
3
*
3
;
++
i
)
{
grad_
.
push_back
(
1.0
);
}
sparse_lazy_adam_
->
indices_size_
=
2
;
sparse_lazy_adam_
->
var_first_dim_size_
=
3
;
sparse_lazy_adam_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_lazy_adam_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_EQ
(
var_
[
i
],
1.0
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyLazyAdamCpuKernelTest
,
sparse_test2
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
m_
.
push_back
(
1.0
);
v_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_lazy_adam_
->
indices_size_
=
3
;
sparse_lazy_adam_
->
var_first_dim_size_
=
3
;
sparse_lazy_adam_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
2
,
2
,
1
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_lazy_adam_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_EQ
(
var_
[
i
],
1.0
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999684
)
<
1e-6
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.999653
)
<
1e-6
);
}
}
}
// namespace kernel
}
// namespace mindspore
tests/ut/cpp/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel_test.cc
0 → 100644
浏览文件 @
91306cbd
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "common/common_test.h"
#define private public
#define protected public
#include "kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyProximalAdagradCpuKernelTest
:
public
UT
::
Common
{
public:
SparseApplyProximalAdagradCpuKernelTest
()
:
sparse_proximal_adagrad_
(
std
::
make_shared
<
SparseApplyProximalAdagradCPUKernel
>
())
{}
void
SetUp
()
override
{
var_
.
clear
();
accum_
.
clear
();
grad_
.
clear
();
inputs_
.
clear
();
workspace_
.
clear
();
outputs_
.
clear
();
}
AddressPtr
CreateKernelAddress
(
void
*
addr
)
{
auto
kernel_addr
=
std
::
make_shared
<
Address
>
();
kernel_addr
->
addr
=
addr
;
return
kernel_addr
;
}
void
CreateInputAddress
(
std
::
vector
<
int
>
&
indices
)
{
inputs_
.
push_back
(
CreateKernelAddress
(
var_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
accum_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
&
lr_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
l1_
));
inputs_
.
push_back
(
CreateKernelAddress
(
&
l2_
));
inputs_
.
push_back
(
CreateKernelAddress
(
grad_
.
data
()));
inputs_
.
push_back
(
CreateKernelAddress
(
indices
.
data
()));
}
void
CreateWorkspaceAddress
(
std
::
vector
<
float
>
&
new_grad
,
std
::
vector
<
int
>
&
new_indices
)
{
workspace_
.
push_back
(
CreateKernelAddress
(
new_grad
.
data
()));
workspace_
.
push_back
(
CreateKernelAddress
(
new_indices
.
data
()));
}
std
::
vector
<
float
>
var_
;
std
::
vector
<
float
>
accum_
;
std
::
vector
<
float
>
grad_
;
std
::
vector
<
AddressPtr
>
inputs_
;
std
::
vector
<
AddressPtr
>
workspace_
;
std
::
vector
<
AddressPtr
>
outputs_
;
std
::
shared_ptr
<
SparseApplyProximalAdagradCPUKernel
>
sparse_proximal_adagrad_
;
float
lr_
=
0.01
;
float
l1_
=
0.0
;
float
l2_
=
0.0
;
};
TEST_F
(
SparseApplyProximalAdagradCpuKernelTest
,
dense_test
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
accum_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_proximal_adagrad_
->
indices_size_
=
3
;
sparse_proximal_adagrad_
->
var_first_dim_size_
=
3
;
sparse_proximal_adagrad_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
1
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_proximal_adagrad_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.9929289
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyProximalAdagradCpuKernelTest
,
sparse_test1
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
accum_
.
push_back
(
1.0
);
}
for
(
size_t
i
=
0
;
i
<
2
*
3
*
3
;
++
i
)
{
grad_
.
push_back
(
1.0
);
}
sparse_proximal_adagrad_
->
indices_size_
=
2
;
sparse_proximal_adagrad_
->
var_first_dim_size_
=
3
;
sparse_proximal_adagrad_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
0
,
2
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_proximal_adagrad_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.9929289
)
<
1e-6
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_EQ
(
var_
[
i
],
1.0
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.9929289
)
<
1e-6
);
}
}
TEST_F
(
SparseApplyProximalAdagradCpuKernelTest
,
sparse_test2
)
{
for
(
size_t
i
=
0
;
i
<
3
*
3
*
3
;
++
i
)
{
var_
.
push_back
(
1.0
);
accum_
.
push_back
(
1.0
);
grad_
.
push_back
(
1.0
);
}
sparse_proximal_adagrad_
->
indices_size_
=
3
;
sparse_proximal_adagrad_
->
var_first_dim_size_
=
3
;
sparse_proximal_adagrad_
->
var_outer_dim_size_
=
9
;
std
::
vector
<
int
>
indices
{
2
,
2
,
1
};
CreateInputAddress
(
indices
);
std
::
vector
<
float
>
new_grad
(
3
*
3
*
3
);
std
::
vector
<
int
>
new_indices
(
3
);
CreateWorkspaceAddress
(
new_grad
,
new_indices
);
sparse_proximal_adagrad_
->
Launch
(
inputs_
,
workspace_
,
outputs_
);
for
(
size_t
i
=
0
;
i
<
3
*
3
;
++
i
)
{
EXPECT_EQ
(
var_
[
i
],
1.0
);
}
for
(
size_t
i
=
3
*
3
;
i
<
2
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.9929289
)
<
1e-6
);
}
for
(
size_t
i
=
2
*
3
*
3
;
i
<
3
*
3
*
3
;
++
i
)
{
EXPECT_TRUE
(
std
::
fabs
(
var_
[
i
]
-
0.9910557
)
<
1e-6
);
}
}
}
// namespace kernel
}
// namespace mindspore
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录