提交 8f04adf1 编写于 作者: H hongxing

feature : eliminate graph

上级 a9816fa7
......@@ -28,52 +28,56 @@
namespace mindspore {
namespace parallel {
void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::shared_ptr<OperatorInfo>> &ops) {
void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
const std::vector<std::vector<std::string>> &input_tensor_names,
const std::shared_ptr<std::vector<size_t>> index_list) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(eli_list);
MS_EXCEPTION_IF_NULL(index_list);
GeneratePartitionedOperatorStrategy(graph, ops, index_list);
std::shared_ptr<std::vector<size_t>> no_stra_op_list(new std::vector<size_t>);
GenerateEliminatedOperatorStrategyForward(graph, ops, eli_list, input_tensor_names, index_list, no_stra_op_list);
GenerateEliminatedOperatorStrategyBackward(ops, input_tensor_names, no_stra_op_list);
}
for (size_t iter_ops = 0; iter_ops < ops.size(); iter_ops++) {
std::vector<std::vector<int32_t>> stra;
for (size_t iter_op_inputs = 0; iter_op_inputs < ops[iter_ops]->inputs_tensor_info().size(); iter_op_inputs++) {
stra.push_back(PrepareStrategy(graph, ops, iter_ops, iter_op_inputs));
}
// OneHot's scalar parameters were removed by entire_costgraph, we had to complete them.
if (ops[iter_ops]->type() == ONEHOT) {
std::vector<int32_t> s_Onehot = {};
stra.push_back(s_Onehot);
stra.push_back(s_Onehot);
std::vector<std::vector<int32_t>> PrepareMatMul(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops) {
std::vector<std::vector<int32_t>> strategies;
for (size_t iter_op_inputs = 0; iter_op_inputs < ops[iter_ops]->inputs_tensor_info().size(); iter_op_inputs++) {
std::vector<int32_t> s;
auto attrs = ops[iter_ops]->attrs();
bool transpose_a = attrs[TRANSPOSE_A]->cast<BoolImmPtr>()->value();
bool transpose_b = attrs[TRANSPOSE_B]->cast<BoolImmPtr>()->value();
if (transpose_a && (iter_op_inputs == 0)) {
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
} else if (transpose_b && (iter_op_inputs == 1)) {
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
} else {
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
}
StrategyPtr sp = std::make_shared<Strategy>(0, stra);
ops[iter_ops]->SetSelectedStrategyAndCost(sp, ops[iter_ops]->selected_cost());
strategies.push_back(s);
}
return strategies;
}
std::vector<int32_t> PrepareMatMul(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops, const size_t iter_nodes,
const size_t iter_op_inputs) {
std::vector<int32_t> s;
auto attrs = ops[iter_nodes]->attrs();
bool transpose_a = attrs[TRANSPOSE_A]->cast<BoolImmPtr>()->value();
bool transpose_b = attrs[TRANSPOSE_B]->cast<BoolImmPtr>()->value();
if (transpose_a && (iter_op_inputs == 0)) {
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_nodes].apply.arguments[iter_op_inputs].tensor_str.str_w));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_nodes].apply.arguments[iter_op_inputs].tensor_str.str_h));
} else if (transpose_b && (iter_op_inputs == 1)) {
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_nodes].apply.arguments[iter_op_inputs].tensor_str.str_w));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_nodes].apply.arguments[iter_op_inputs].tensor_str.str_h));
} else {
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_nodes].apply.arguments[iter_op_inputs].tensor_str.str_h));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_nodes].apply.arguments[iter_op_inputs].tensor_str.str_w));
}
return s;
std::vector<std::vector<int32_t>> PrepareVirtualDataset(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops) {
std::vector<std::vector<int32_t>> strategies = MakeDataParallelStrategy(ops, iter_ops);
strategies[1][0] = strategies[0][0];
return strategies;
}
// std::vector<std::vector<int32_t>> PrepareVirtualDataset(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
// const size_t iter_ops) {
// std::vector<std::vector<int32_t>> strategies = MakeDataParallelStrategy(ops, iter_ops);
// strategies[1][0] = strategies[0][0];
// return strategies;
// }
std::vector<std::vector<int32_t>> PrepareBiasAdd(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s) {
std::vector<std::vector<int32_t>> strategies;
......@@ -99,9 +103,9 @@ std::vector<std::vector<int32_t>> PrepareOneHot(std::vector<int32_t> s) {
return strategies;
}
std::vector<int32_t> MakeRecSearchStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<Graph> &graph, const size_t iter_ops,
const size_t iter_op_inputs) {
std::vector<std::vector<int32_t>> MakeRecSearchStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops) {
if (ops.empty()) {
MS_LOG(EXCEPTION) << "Failure: Operators is empty.";
}
......@@ -111,35 +115,46 @@ std::vector<int32_t> MakeRecSearchStrategy(const std::vector<std::shared_ptr<Ope
StrategyPtr origin_strategy = ops[iter_ops]->strategy();
if (iter_op_inputs >= origin_strategy->GetInputDim().size()) {
MS_LOG(EXCEPTION) << "Failure: Strategy's InputDim out of range.";
}
// size_t output_size = ops[iter_ops]->outputs_tensor_info()[0].shape().size();
size_t output_size = origin_strategy->GetInputDim()[iter_op_inputs].size();
std::vector<int32_t> s = {};
if (output_size == 4) {
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_n));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_c));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_h));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_w));
} else if (output_size == 2) {
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_h));
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_w));
} else if (output_size == 1) {
s.push_back(static_cast<int32_t>(1.0 / graph->nodes[iter_ops].apply.arguments[iter_op_inputs].tensor_str.str_w));
} else if (output_size == 0) {
return s;
} else {
MS_LOG(ERROR) << "Tensor's output size is unexcepted.";
}
std::vector<std::vector<int32_t>> strategies;
for (size_t iter_op_inputs = 0; iter_op_inputs < ops[iter_ops]->inputs_tensor_info().size(); iter_op_inputs++) {
if (iter_op_inputs >= origin_strategy->GetInputDim().size()) {
MS_LOG(EXCEPTION) << "Failure: Strategy's InputDim out of range.";
}
return s;
// size_t output_size = ops[iter_ops]->outputs_tensor_info()[0].shape().size();
size_t output_size = origin_strategy->GetInputDim()[iter_op_inputs].size();
std::vector<int32_t> s;
if (output_size == 4) {
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_n));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_c));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
} else if (output_size == 2) {
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
} else if (output_size == 1) {
s.push_back(
static_cast<int32_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
} else if (output_size == 0) {
s = {};
} else {
MS_LOG(ERROR) << "Tensor's output size is unexcepted.";
}
strategies.push_back(s);
}
return strategies;
}
std::vector<int32_t> MakeDataParallelStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, const size_t iter_op_inputs) {
std::vector<std::vector<int32_t>> MakeDataParallelStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops) {
if (ops.empty()) {
MS_LOG(EXCEPTION) << "Failure: Operators is empty.";
}
......@@ -149,28 +164,32 @@ std::vector<int32_t> MakeDataParallelStrategy(const std::vector<std::shared_ptr<
StrategyPtr origin_strategy = ops[iter_ops]->strategy();
if (iter_op_inputs >= origin_strategy->GetInputDim().size()) {
MS_LOG(EXCEPTION) << "Failure: Strategy's InputDim out of range.";
}
std::vector<std::vector<int32_t>> strategies;
for (size_t iter_op_inputs = 0; iter_op_inputs < ops[iter_ops]->inputs_tensor_info().size(); iter_op_inputs++) {
if (iter_op_inputs >= origin_strategy->GetInputDim().size()) {
MS_LOG(EXCEPTION) << "Failure: Strategy's InputDim out of range.";
}
std::vector<int32_t> s;
size_t input_size = origin_strategy->GetInputDim()[iter_op_inputs].size();
for (size_t dim = 0; dim < input_size; dim++) {
if (dim == 0 && input_size == 4) {
size_t max_device_num = g_device_manager->DeviceNum();
size_t target_tensor_batch = ops[iter_ops]->outputs_tensor_info()[0].shape()[0];
s.push_back(std::min(max_device_num, target_tensor_batch));
} else {
s.push_back(1);
std::vector<int32_t> s;
size_t input_size = origin_strategy->GetInputDim()[iter_op_inputs].size();
for (size_t dim = 0; dim < input_size; dim++) {
if (dim == 0 && input_size == 4) {
size_t max_device_num = g_device_manager->DeviceNum();
size_t target_tensor_batch = ops[iter_ops]->outputs_tensor_info()[0].shape()[0];
s.push_back(std::min(max_device_num, target_tensor_batch));
} else {
s.push_back(1);
}
}
}
return s;
strategies.push_back(s);
}
return strategies;
}
std::vector<int32_t> PrepareStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops, const size_t iter_ops,
const size_t iter_op_inputs) {
std::vector<std::vector<int32_t>> PrepareStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops) {
if (ops.empty()) {
MS_LOG(EXCEPTION) << "Failure: Operators is empty.";
}
......@@ -179,19 +198,35 @@ std::vector<int32_t> PrepareStrategy(const std::shared_ptr<Graph> &graph,
}
auto type = ops[iter_ops]->type();
if (type == VIRTUAL_DATA_SET) {
return PrepareVirtualDataset(ops, iter_ops);
}
auto idx = DictOpType.find(type);
if (idx == DictOpType.end()) {
return MakeDataParallelStrategy(ops, iter_ops, iter_op_inputs);
return MakeDataParallelStrategy(ops, iter_ops);
}
if (type == MATMUL) {
return PrepareMatMul(graph, ops, iter_ops, iter_op_inputs);
return PrepareMatMul(graph, ops, iter_graph, iter_ops);
} else if (type == RESHAPE) {
return MakeDataParallelStrategy(ops, iter_ops, iter_op_inputs);
} else if (type == DIV || type == SUB || type == MUL) {
return MakeDataParallelStrategy(ops, iter_ops, iter_op_inputs);
return MakeDataParallelStrategy(ops, iter_ops);
} else {
return MakeRecSearchStrategy(ops, graph, iter_ops, iter_op_inputs);
return MakeRecSearchStrategy(graph, ops, iter_graph, iter_ops);
}
}
void GeneratePartitionedOperatorStrategy(const std::shared_ptr<Graph> graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<std::vector<size_t>> index_list) {
for (size_t iter_ops = 0; iter_ops < (size_t)index_list->size(); iter_ops++) {
std::vector<std::vector<int32_t>> strategies;
size_t iter_graph = index_list->at(iter_ops);
if (iter_graph == SIZE_MAX) {
continue;
}
strategies = PrepareStrategy(graph, ops, iter_graph, iter_ops);
StrategyPtr sp = std::make_shared<Strategy>(0, strategies);
ops[iter_ops]->SetSelectedStrategyAndCost(sp, ops[iter_ops]->selected_cost());
}
}
......@@ -353,6 +388,25 @@ std::vector<int32_t> ModifyStrategyIfReduceIncoming(const std::vector<std::share
return s_Reduce;
}
std::vector<int32_t> CopyIncomingOperatorInputStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const int incoming_op_index, const size_t iter_ops,
const std::shared_ptr<std::vector<size_t>> no_stra_op_list) {
std::vector<int32_t> s;
s = PrepareIncomingOperatorInputStrategy(ops, incoming_op_index);
if (s.size() != 0) {
if (ops[incoming_op_index]->type() == SQUEEZE) {
s = ModifyStrategyIfSqueezeIncoming(ops, incoming_op_index, s);
}
if (ops[incoming_op_index]->type() == REDUCE_SUM || ops[incoming_op_index]->type() == REDUCE_MAX ||
ops[incoming_op_index]->type() == REDUCE_MIN || ops[incoming_op_index]->type() == REDUCE_MEAN) {
s = ModifyStrategyIfReduceIncoming(ops, incoming_op_index, s);
}
} else {
no_stra_op_list->push_back(iter_ops);
}
return s;
}
std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s) {
std::vector<int32_t> s_empty = {};
......@@ -389,6 +443,33 @@ std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vect
return stra;
}
void GenerateEliminatedOperatorStrategyForward(const std::shared_ptr<Graph> graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
const std::vector<std::vector<std::string>> &input_tensor_names,
const std::shared_ptr<std::vector<size_t>> index_list,
const std::shared_ptr<std::vector<size_t>> no_stra_op_list) {
for (int eli_index = eli_list->size() - 1; eli_index >= 0; eli_index--) {
size_t iter_ops = eli_list->at(eli_index)[0];
std::vector<std::vector<int32_t>> stra;
std::vector<int32_t> s;
int incoming_op_index = FindIndexOfOperatorIncoming(input_tensor_names, iter_ops);
if (incoming_op_index != -1) {
auto iter_graph = index_list->at(incoming_op_index);
if (iter_graph != SIZE_MAX) {
s = CopyIncomingOperatorOutputStrategy(graph, ops, iter_ops, iter_graph);
} else {
s = CopyIncomingOperatorInputStrategy(ops, incoming_op_index, iter_ops, no_stra_op_list);
}
} else {
no_stra_op_list->push_back(iter_ops);
}
stra = GenerateStrategiesFromStrategy(ops, iter_ops, s);
StrategyPtr sp = std::make_shared<Strategy>(0, stra);
ops[iter_ops]->SetSelectedStrategyAndCost(sp, ops[iter_ops]->selected_cost());
}
}
std::vector<int32_t> ModifyStrategyIfSqueezeOutgoing(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s) {
std::vector<int32_t> s_Squeeze;
......@@ -427,5 +508,47 @@ std::vector<int32_t> ModifyStrategyIfReduceOutgoing(const std::vector<std::share
}
return s_Reduce;
}
std::vector<int32_t> CopyOutgoingOperatorInputStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::vector<std::vector<std::string>> &input_tensor_names,
const size_t iter_ops) {
std::vector<int32_t> s;
bool found = false;
for (size_t i = 0; i < (size_t)input_tensor_names.size(); i++) {
for (size_t j = 1; j < (size_t)input_tensor_names[i].size(); j++) {
if (input_tensor_names[i][j] == input_tensor_names[iter_ops][0]) {
for (size_t k = 0; k < ops[i]->selected_strategy()->GetInputDim()[j - 1].size(); ++k) {
s.push_back(ops[i]->selected_strategy()->GetInputDim()[j - 1][k]);
}
found = true;
break;
}
}
if (found) break;
}
return s;
}
void GenerateEliminatedOperatorStrategyBackward(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::vector<std::vector<std::string>> &input_tensor_names,
const std::shared_ptr<std::vector<size_t>> no_stra_op_list) {
MS_EXCEPTION_IF_NULL(no_stra_op_list);
for (int iter_list = no_stra_op_list->size() - 1; iter_list >= 0; iter_list--) {
auto iter_ops = no_stra_op_list->at(iter_list);
std::vector<std::vector<int32_t>> stra;
std::vector<int32_t> s = CopyOutgoingOperatorInputStrategy(ops, input_tensor_names, iter_ops);
if (ops[iter_ops]->type() == SQUEEZE) {
s = ModifyStrategyIfSqueezeOutgoing(ops, iter_ops, s);
}
if (ops[iter_ops]->type() == REDUCE_SUM || ops[iter_ops]->type() == REDUCE_MAX ||
ops[iter_ops]->type() == REDUCE_MIN || ops[iter_ops]->type() == REDUCE_MEAN) {
s = ModifyStrategyIfReduceOutgoing(ops, iter_ops, s);
}
stra = GenerateStrategiesFromStrategy(ops, iter_ops, s);
StrategyPtr sp = std::make_shared<Strategy>(0, stra);
ops[iter_ops]->SetSelectedStrategyAndCost(sp, ops[iter_ops]->selected_cost());
}
}
} // namespace parallel
} // namespace mindspore
......@@ -27,23 +27,29 @@
namespace mindspore {
namespace parallel {
void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::shared_ptr<OperatorInfo>> &ops);
std::vector<int32_t> PrepareMatMul(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops, const size_t iter_nodes,
const size_t iter_op_inputs);
void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
const std::vector<std::vector<std::string>> &input_tensor_names,
const std::shared_ptr<std::vector<size_t>> index_list);
std::vector<std::vector<int32_t>> PrepareMatMul(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
std::vector<std::vector<int32_t>> PrepareVirtualDataset(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops);
std::vector<std::vector<int32_t>> PrepareBiasAdd(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s);
std::vector<std::vector<int32_t>> PrepareOneHot(std::vector<int32_t> s);
std::vector<int32_t> MakeRecSearchStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<Graph> &graph, const size_t iter_ops,
const size_t iter_op_inputs);
std::vector<int32_t> MakeDataParallelStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, const size_t iter_op_inputs);
std::vector<int32_t> PrepareStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops, const size_t iter_ops,
const size_t iter_op_inputs);
std::vector<std::vector<int32_t>> MakeRecSearchStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
std::vector<std::vector<int32_t>> MakeDataParallelStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops);
std::vector<std::vector<int32_t>> PrepareStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
void GeneratePartitionedOperatorStrategy(const std::shared_ptr<Graph> graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<std::vector<size_t>> index_list);
int FindIndexOfOperatorIncoming(const std::vector<std::vector<std::string>> &input_tensor_names, const size_t iter_ops);
std::vector<int32_t> CopyIncomingOperatorOutputStrategy(const std::shared_ptr<Graph> graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
......@@ -56,12 +62,27 @@ std::vector<int32_t> ModifyStrategyIfSqueezeIncoming(const std::vector<std::shar
std::vector<int32_t> GetDimList(const std::vector<std::shared_ptr<OperatorInfo>> &ops, const size_t iter_ops);
std::vector<int32_t> ModifyStrategyIfReduceIncoming(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const int incoming_op_index, std::vector<int32_t> s);
std::vector<int32_t> CopyIncomingOperatorInputStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const int incoming_op_index, const size_t iter_ops,
const std::shared_ptr<std::vector<size_t>> no_stra_op_list);
std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s);
void GenerateEliminatedOperatorStrategyForward(std::shared_ptr<Graph> graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
const std::vector<std::vector<std::string>> &input_tensor_names,
const std::shared_ptr<std::vector<size_t>> index_list,
const std::shared_ptr<std::vector<size_t>> no_stra_op_list);
std::vector<int32_t> ModifyStrategyIfSqueezeOutgoing(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s);
std::vector<int32_t> ModifyStrategyIfReduceOutgoing(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s);
std::vector<int32_t> CopyOutgoingOperatorInputStrategy(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::vector<std::vector<std::string>> &input_tensor_names,
const size_t iter_ops);
void GenerateEliminatedOperatorStrategyBackward(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const std::vector<std::vector<std::string>> &input_tensor_names,
const std::shared_ptr<std::vector<size_t>> no_stra_op_list);
} // namespace parallel
} // namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_GENERATE_STRATEGY_H_
......@@ -46,7 +46,8 @@ enum OperatorType {
kRecMul,
kRecDiv,
kRecSqueeze,
kRecCast
kRecCast,
kRecReduce
};
enum InfoType { kApplication, kConstant };
......
......@@ -20,6 +20,7 @@
#include <memory>
#include <string>
#include <vector>
#include <set>
#include "ir/value.h"
#include "parallel/auto_parallel/rec_core/rec_graph.h"
......@@ -161,5 +162,71 @@ size_t GetIndexInInputTensorNames(const std::vector<std::vector<std::string>> &i
MS_LOG(INFO) << "Get index failed, using SIZE_MAX insted";
return SIZE_MAX;
}
void Eliminate_Aux(const size_t node_index, const std::shared_ptr<Graph> graph,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list) {
std::vector<size_t> eli;
eli.push_back(node_index);
for (size_t i = 0; i < (size_t)graph->nodes[node_index].node_out.size(); i++) {
eli.push_back(graph->nodes[node_index].node_out[i]);
}
eli_list->push_back(eli);
for (auto input_index : graph->nodes[node_index].node_in) {
auto it = find(graph->nodes[input_index].node_out.begin(), graph->nodes[input_index].node_out.end(), node_index);
if (it != graph->nodes[input_index].node_out.end()) {
graph->nodes[input_index].node_out.erase(it);
for (auto output_index : graph->nodes[node_index].node_out) {
graph->nodes[input_index].node_out.push_back(output_index);
}
}
}
for (auto output_index : graph->nodes[node_index].node_out) {
auto it = find(graph->nodes[output_index].node_in.begin(), graph->nodes[output_index].node_in.end(), node_index);
if (it != graph->nodes[output_index].node_in.end()) {
graph->nodes[output_index].node_in.erase(it);
for (auto input_index : graph->nodes[node_index].node_in) {
graph->nodes[output_index].node_in.push_back(input_index);
}
}
}
}
std::shared_ptr<Graph> EliminateGraph(const std::shared_ptr<Graph> graph,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
const std::shared_ptr<std::vector<size_t>> index_list) {
MS_EXCEPTION_IF_NULL(graph);
const std::set<OperatorType> type_list = {
OperatorType::kRecOneHot, OperatorType::kRecReLU, OperatorType::kRecLog, OperatorType::kRecExp,
OperatorType::kRecAdd, OperatorType::kRecElmWiseOp, OperatorType::kRecBiasAdd, OperatorType::kRecSub,
OperatorType::kRecMul, OperatorType::kRecDiv, OperatorType::kRecSqueeze, OperatorType::kRecReduce,
OperatorType::kRecCast};
for (size_t node_index = 0; node_index < (size_t)graph->nodes.size(); node_index++) {
auto type = graph->nodes[node_index].apply.op_type;
if (type_list.find(type) != type_list.end()) {
Eliminate_Aux(node_index, graph, eli_list);
}
}
index_list->reserve(graph->nodes.size());
for (size_t i = 0; i < (size_t)graph->nodes.size(); i++) {
index_list->push_back(i);
}
for (size_t i = 0; i < (size_t)eli_list->size(); i++) {
if (eli_list->at(i)[0] >= index_list->size()) {
MS_LOG(EXCEPTION) << "Failure: Operators' elements out of range.";
}
index_list->at(eli_list->at(i)[0]) = SIZE_MAX;
for (size_t j = eli_list->at(i)[0] + 1; j < (size_t)index_list->size(); j++) {
index_list->at(j)--;
}
}
std::shared_ptr<Graph> new_graph(new Graph);
for (size_t i = 0; i < (size_t)graph->nodes.size(); i++) {
if (index_list->at(i) > SIZE_MAX / 2) {
continue;
}
new_graph->nodes.push_back(graph->nodes[i]);
}
return new_graph;
}
} // namespace parallel
} // namespace mindspore
......@@ -50,10 +50,10 @@ const std::map<std::string, OperatorType> DictOpType{
{DIV, OperatorType::kRecElmWiseOp},
{SQUEEZE, OperatorType::kRecSqueeze},
{CAST, OperatorType::kRecCast},
{REDUCE_SUM, OperatorType::kRecCast},
{REDUCE_MAX, OperatorType::kRecCast},
{REDUCE_MIN, OperatorType::kRecCast},
{REDUCE_MEAN, OperatorType::kRecCast}};
{REDUCE_SUM, OperatorType::kRecReduce},
{REDUCE_MAX, OperatorType::kRecReduce},
{REDUCE_MIN, OperatorType::kRecReduce},
{REDUCE_MEAN, OperatorType::kRecReduce}};
const TensorParam MakeTensor(int n, int c, int h, int w);
......@@ -72,6 +72,13 @@ void MakeEdge(const std::vector<std::vector<std::string>> &input_tensor_names, s
size_t GetIndexInInputTensorNames(const std::vector<std::vector<std::string>> &input_tensor_names,
const std::string &input_name);
void Eliminate_Aux(const size_t node_index, const std::shared_ptr<Graph> graph,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list);
std::shared_ptr<Graph> EliminateGraph(const std::shared_ptr<Graph> graph,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
const std::shared_ptr<std::vector<size_t>> index_list);
} // namespace parallel
} // namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_PARSE_GRAPH_H_
......@@ -1158,11 +1158,12 @@ Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const
for (auto it = tuple_getitem_list.begin(); it != tuple_getitem_list.end();) {
input_tensor_names = RecInputTensorNames(it++, input_tensor_names);
}
std::shared_ptr<std::vector<size_t>> ops_nodes_list(new std::vector<size_t>);
std::shared_ptr<Graph> graph = ParseGraph(ops, input_tensor_names);
std::shared_ptr<std::vector<std::vector<size_t>>> eli_list(new std::vector<std::vector<size_t>>);
std::shared_ptr<std::vector<size_t>> index_list(new std::vector<size_t>);
graph = EliminateGraph(graph, eli_list, index_list);
size_t num_device = g_device_manager->DeviceNum();
double device_memory = entire_costgraph->GetDeviceMemory();
if (PartitionForAllDevices(num_device, device_memory, graph) == SUCCESS) {
......@@ -1172,7 +1173,7 @@ Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const
return FAILED;
}
GenerateStrategy(graph, ops);
GenerateStrategy(graph, ops, eli_list, input_tensor_names, index_list);
if (entire_costgraph->InitSelectedStrategy() == SUCCESS) {
MS_LOG(INFO) << "Init selected strategy succeeded.";
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册