Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
8f04adf1
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8f04adf1
编写于
5月 14, 2020
作者:
H
hongxing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feature : eliminate graph
上级
a9816fa7
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
331 addition
and
111 deletion
+331
-111
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.cc
.../parallel/auto_parallel/rec_core/rec_generate_strategy.cc
+213
-90
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.h
...c/parallel/auto_parallel/rec_core/rec_generate_strategy.h
+33
-12
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_graph.h
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_graph.h
+2
-1
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.cc
.../ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.cc
+67
-0
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.h
...e/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.h
+11
-4
mindspore/ccsrc/parallel/step_auto_parallel.cc
mindspore/ccsrc/parallel/step_auto_parallel.cc
+5
-4
未找到文件。
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.cc
浏览文件 @
8f04adf1
...
...
@@ -28,52 +28,56 @@
namespace
mindspore
{
namespace
parallel
{
void
GenerateStrategy
(
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
)
{
void
GenerateStrategy
(
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
)
{
MS_EXCEPTION_IF_NULL
(
graph
);
MS_EXCEPTION_IF_NULL
(
eli_list
);
MS_EXCEPTION_IF_NULL
(
index_list
);
GeneratePartitionedOperatorStrategy
(
graph
,
ops
,
index_list
);
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
(
new
std
::
vector
<
size_t
>
);
GenerateEliminatedOperatorStrategyForward
(
graph
,
ops
,
eli_list
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
GenerateEliminatedOperatorStrategyBackward
(
ops
,
input_tensor_names
,
no_stra_op_list
);
}
for
(
size_t
iter_ops
=
0
;
iter_ops
<
ops
.
size
();
iter_ops
++
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
stra
.
push_back
(
PrepareStrategy
(
graph
,
ops
,
iter_ops
,
iter_op_inputs
));
}
// OneHot's scalar parameters were removed by entire_costgraph, we had to complete them.
if
(
ops
[
iter_ops
]
->
type
()
==
ONEHOT
)
{
std
::
vector
<
int32_t
>
s_Onehot
=
{};
stra
.
push_back
(
s_Onehot
);
stra
.
push_back
(
s_Onehot
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareMatMul
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
std
::
vector
<
int32_t
>
s
;
auto
attrs
=
ops
[
iter_ops
]
->
attrs
();
bool
transpose_a
=
attrs
[
TRANSPOSE_A
]
->
cast
<
BoolImmPtr
>
()
->
value
();
bool
transpose_b
=
attrs
[
TRANSPOSE_B
]
->
cast
<
BoolImmPtr
>
()
->
value
();
if
(
transpose_a
&&
(
iter_op_inputs
==
0
))
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
}
else
if
(
transpose_b
&&
(
iter_op_inputs
==
1
))
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
}
else
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
strategies
.
push_back
(
s
);
}
return
strategies
;
}
std
::
vector
<
int32_t
>
PrepareMatMul
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_nodes
,
const
size_t
iter_op_inputs
)
{
std
::
vector
<
int32_t
>
s
;
auto
attrs
=
ops
[
iter_nodes
]
->
attrs
();
bool
transpose_a
=
attrs
[
TRANSPOSE_A
]
->
cast
<
BoolImmPtr
>
()
->
value
();
bool
transpose_b
=
attrs
[
TRANSPOSE_B
]
->
cast
<
BoolImmPtr
>
()
->
value
();
if
(
transpose_a
&&
(
iter_op_inputs
==
0
))
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_nodes
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_nodes
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
}
else
if
(
transpose_b
&&
(
iter_op_inputs
==
1
))
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_nodes
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_nodes
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
}
else
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_nodes
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_nodes
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
return
s
;
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareVirtualDataset
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
=
MakeDataParallelStrategy
(
ops
,
iter_ops
);
strategies
[
1
][
0
]
=
strategies
[
0
][
0
];
return
strategies
;
}
// std::vector<std::vector<int32_t>> PrepareVirtualDataset(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
// const size_t iter_ops) {
// std::vector<std::vector<int32_t>> strategies = MakeDataParallelStrategy(ops, iter_ops);
// strategies[1][0] = strategies[0][0];
// return strategies;
// }
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareBiasAdd
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
...
...
@@ -99,9 +103,9 @@ std::vector<std::vector<int32_t>> PrepareOneHot(std::vector<int32_t> s) {
return
strategies
;
}
std
::
vector
<
int32_t
>
MakeRecSearchStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
size_t
iter_
ops
,
const
size_t
iter_op_input
s
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeRecSearchStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_op
s
)
{
if
(
ops
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Operators is empty."
;
}
...
...
@@ -111,35 +115,46 @@ std::vector<int32_t> MakeRecSearchStrategy(const std::vector<std::shared_ptr<Ope
StrategyPtr
origin_strategy
=
ops
[
iter_ops
]
->
strategy
();
if
(
iter_op_inputs
>=
origin_strategy
->
GetInputDim
().
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Strategy's InputDim out of range."
;
}
// size_t output_size = ops[iter_ops]->outputs_tensor_info()[0].shape().size();
size_t
output_size
=
origin_strategy
->
GetInputDim
()[
iter_op_inputs
].
size
();
std
::
vector
<
int32_t
>
s
=
{};
if
(
output_size
==
4
)
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_n
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_c
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
else
if
(
output_size
==
2
)
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
else
if
(
output_size
==
1
)
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_ops
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
else
if
(
output_size
==
0
)
{
return
s
;
}
else
{
MS_LOG
(
ERROR
)
<<
"Tensor's output size is unexcepted."
;
}
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
iter_op_inputs
>=
origin_strategy
->
GetInputDim
().
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Strategy's InputDim out of range."
;
}
return
s
;
// size_t output_size = ops[iter_ops]->outputs_tensor_info()[0].shape().size();
size_t
output_size
=
origin_strategy
->
GetInputDim
()[
iter_op_inputs
].
size
();
std
::
vector
<
int32_t
>
s
;
if
(
output_size
==
4
)
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_n
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_c
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
else
if
(
output_size
==
2
)
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_h
));
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
else
if
(
output_size
==
1
)
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
}
else
if
(
output_size
==
0
)
{
s
=
{};
}
else
{
MS_LOG
(
ERROR
)
<<
"Tensor's output size is unexcepted."
;
}
strategies
.
push_back
(
s
);
}
return
strategies
;
}
std
::
vector
<
int32_t
>
MakeDataParallelStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
const
size_t
iter_op_input
s
)
{
std
::
vector
<
std
::
vector
<
int32_t
>
>
MakeDataParallelStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_op
s
)
{
if
(
ops
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Operators is empty."
;
}
...
...
@@ -149,28 +164,32 @@ std::vector<int32_t> MakeDataParallelStrategy(const std::vector<std::shared_ptr<
StrategyPtr
origin_strategy
=
ops
[
iter_ops
]
->
strategy
();
if
(
iter_op_inputs
>=
origin_strategy
->
GetInputDim
().
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Strategy's InputDim out of range."
;
}
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
iter_op_inputs
>=
origin_strategy
->
GetInputDim
().
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Strategy's InputDim out of range."
;
}
std
::
vector
<
int32_t
>
s
;
size_t
input_size
=
origin_strategy
->
GetInputDim
()[
iter_op_inputs
].
size
();
for
(
size_t
dim
=
0
;
dim
<
input_size
;
dim
++
)
{
if
(
dim
==
0
&&
input_size
==
4
)
{
size_t
max_device_num
=
g_device_manager
->
DeviceNum
();
size_t
target_tensor_batch
=
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
()[
0
];
s
.
push_back
(
std
::
min
(
max_device_num
,
target_tensor_batch
));
}
else
{
s
.
push_back
(
1
);
std
::
vector
<
int32_t
>
s
;
size_t
input_size
=
origin_strategy
->
GetInputDim
()[
iter_op_inputs
].
size
();
for
(
size_t
dim
=
0
;
dim
<
input_size
;
dim
++
)
{
if
(
dim
==
0
&&
input_size
==
4
)
{
size_t
max_device_num
=
g_device_manager
->
DeviceNum
();
size_t
target_tensor_batch
=
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
()[
0
];
s
.
push_back
(
std
::
min
(
max_device_num
,
target_tensor_batch
));
}
else
{
s
.
push_back
(
1
);
}
}
}
return
s
;
strategies
.
push_back
(
s
);
}
return
strategies
;
}
std
::
vector
<
int32_t
>
PrepareStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_
ops
,
const
size_t
iter_op_input
s
)
{
std
::
vector
<
std
::
vector
<
int32_t
>
>
PrepareStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_op
s
)
{
if
(
ops
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Operators is empty."
;
}
...
...
@@ -179,19 +198,35 @@ std::vector<int32_t> PrepareStrategy(const std::shared_ptr<Graph> &graph,
}
auto
type
=
ops
[
iter_ops
]
->
type
();
if
(
type
==
VIRTUAL_DATA_SET
)
{
return
PrepareVirtualDataset
(
ops
,
iter_ops
);
}
auto
idx
=
DictOpType
.
find
(
type
);
if
(
idx
==
DictOpType
.
end
())
{
return
MakeDataParallelStrategy
(
ops
,
iter_ops
,
iter_op_inputs
);
return
MakeDataParallelStrategy
(
ops
,
iter_ops
);
}
if
(
type
==
MATMUL
)
{
return
PrepareMatMul
(
graph
,
ops
,
iter_
ops
,
iter_op_input
s
);
return
PrepareMatMul
(
graph
,
ops
,
iter_
graph
,
iter_op
s
);
}
else
if
(
type
==
RESHAPE
)
{
return
MakeDataParallelStrategy
(
ops
,
iter_ops
,
iter_op_inputs
);
}
else
if
(
type
==
DIV
||
type
==
SUB
||
type
==
MUL
)
{
return
MakeDataParallelStrategy
(
ops
,
iter_ops
,
iter_op_inputs
);
return
MakeDataParallelStrategy
(
ops
,
iter_ops
);
}
else
{
return
MakeRecSearchStrategy
(
ops
,
graph
,
iter_ops
,
iter_op_inputs
);
return
MakeRecSearchStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
}
}
void
GeneratePartitionedOperatorStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
)
{
for
(
size_t
iter_ops
=
0
;
iter_ops
<
(
size_t
)
index_list
->
size
();
iter_ops
++
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
size_t
iter_graph
=
index_list
->
at
(
iter_ops
);
if
(
iter_graph
==
SIZE_MAX
)
{
continue
;
}
strategies
=
PrepareStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
strategies
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
}
}
...
...
@@ -353,6 +388,25 @@ std::vector<int32_t> ModifyStrategyIfReduceIncoming(const std::vector<std::share
return
s_Reduce
;
}
std
::
vector
<
int32_t
>
CopyIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
int
incoming_op_index
,
const
size_t
iter_ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
std
::
vector
<
int32_t
>
s
;
s
=
PrepareIncomingOperatorInputStrategy
(
ops
,
incoming_op_index
);
if
(
s
.
size
()
!=
0
)
{
if
(
ops
[
incoming_op_index
]
->
type
()
==
SQUEEZE
)
{
s
=
ModifyStrategyIfSqueezeIncoming
(
ops
,
incoming_op_index
,
s
);
}
if
(
ops
[
incoming_op_index
]
->
type
()
==
REDUCE_SUM
||
ops
[
incoming_op_index
]
->
type
()
==
REDUCE_MAX
||
ops
[
incoming_op_index
]
->
type
()
==
REDUCE_MIN
||
ops
[
incoming_op_index
]
->
type
()
==
REDUCE_MEAN
)
{
s
=
ModifyStrategyIfReduceIncoming
(
ops
,
incoming_op_index
,
s
);
}
}
else
{
no_stra_op_list
->
push_back
(
iter_ops
);
}
return
s
;
}
std
::
vector
<
std
::
vector
<
int32_t
>>
GenerateStrategiesFromStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
int32_t
>
s_empty
=
{};
...
...
@@ -389,6 +443,33 @@ std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vect
return
stra
;
}
void
GenerateEliminatedOperatorStrategyForward
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
for
(
int
eli_index
=
eli_list
->
size
()
-
1
;
eli_index
>=
0
;
eli_index
--
)
{
size_t
iter_ops
=
eli_list
->
at
(
eli_index
)[
0
];
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
;
int
incoming_op_index
=
FindIndexOfOperatorIncoming
(
input_tensor_names
,
iter_ops
);
if
(
incoming_op_index
!=
-
1
)
{
auto
iter_graph
=
index_list
->
at
(
incoming_op_index
);
if
(
iter_graph
!=
SIZE_MAX
)
{
s
=
CopyIncomingOperatorOutputStrategy
(
graph
,
ops
,
iter_ops
,
iter_graph
);
}
else
{
s
=
CopyIncomingOperatorInputStrategy
(
ops
,
incoming_op_index
,
iter_ops
,
no_stra_op_list
);
}
}
else
{
no_stra_op_list
->
push_back
(
iter_ops
);
}
stra
=
GenerateStrategiesFromStrategy
(
ops
,
iter_ops
,
s
);
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
}
}
std
::
vector
<
int32_t
>
ModifyStrategyIfSqueezeOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
int32_t
>
s_Squeeze
;
...
...
@@ -427,5 +508,47 @@ std::vector<int32_t> ModifyStrategyIfReduceOutgoing(const std::vector<std::share
}
return
s_Reduce
;
}
std
::
vector
<
int32_t
>
CopyOutgoingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
)
{
std
::
vector
<
int32_t
>
s
;
bool
found
=
false
;
for
(
size_t
i
=
0
;
i
<
(
size_t
)
input_tensor_names
.
size
();
i
++
)
{
for
(
size_t
j
=
1
;
j
<
(
size_t
)
input_tensor_names
[
i
].
size
();
j
++
)
{
if
(
input_tensor_names
[
i
][
j
]
==
input_tensor_names
[
iter_ops
][
0
])
{
for
(
size_t
k
=
0
;
k
<
ops
[
i
]
->
selected_strategy
()
->
GetInputDim
()[
j
-
1
].
size
();
++
k
)
{
s
.
push_back
(
ops
[
i
]
->
selected_strategy
()
->
GetInputDim
()[
j
-
1
][
k
]);
}
found
=
true
;
break
;
}
}
if
(
found
)
break
;
}
return
s
;
}
void
GenerateEliminatedOperatorStrategyBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
MS_EXCEPTION_IF_NULL
(
no_stra_op_list
);
for
(
int
iter_list
=
no_stra_op_list
->
size
()
-
1
;
iter_list
>=
0
;
iter_list
--
)
{
auto
iter_ops
=
no_stra_op_list
->
at
(
iter_list
);
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
=
CopyOutgoingOperatorInputStrategy
(
ops
,
input_tensor_names
,
iter_ops
);
if
(
ops
[
iter_ops
]
->
type
()
==
SQUEEZE
)
{
s
=
ModifyStrategyIfSqueezeOutgoing
(
ops
,
iter_ops
,
s
);
}
if
(
ops
[
iter_ops
]
->
type
()
==
REDUCE_SUM
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MAX
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MIN
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MEAN
)
{
s
=
ModifyStrategyIfReduceOutgoing
(
ops
,
iter_ops
,
s
);
}
stra
=
GenerateStrategiesFromStrategy
(
ops
,
iter_ops
,
s
);
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
}
}
}
// namespace parallel
}
// namespace mindspore
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.h
浏览文件 @
8f04adf1
...
...
@@ -27,23 +27,29 @@
namespace
mindspore
{
namespace
parallel
{
void
GenerateStrategy
(
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
);
std
::
vector
<
int32_t
>
PrepareMatMul
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_nodes
,
const
size_t
iter_op_inputs
);
void
GenerateStrategy
(
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareMatMul
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareVirtualDataset
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareBiasAdd
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareOneHot
(
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
MakeRecSearchStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
size_t
iter_ops
,
const
size_t
iter_op_inputs
);
std
::
vector
<
int32_t
>
MakeDataParallelStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
const
size_t
iter_op_inputs
);
std
::
vector
<
int32_t
>
PrepareStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
const
size_t
iter_op_inputs
);
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeRecSearchStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeDataParallelStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
void
GeneratePartitionedOperatorStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
);
int
FindIndexOfOperatorIncoming
(
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
);
std
::
vector
<
int32_t
>
CopyIncomingOperatorOutputStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
...
...
@@ -56,12 +62,27 @@ std::vector<int32_t> ModifyStrategyIfSqueezeIncoming(const std::vector<std::shar
std
::
vector
<
int32_t
>
GetDimList
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceIncoming
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
int
incoming_op_index
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
CopyIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
int
incoming_op_index
,
const
size_t
iter_ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
std
::
vector
<
std
::
vector
<
int32_t
>>
GenerateStrategiesFromStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
void
GenerateEliminatedOperatorStrategyForward
(
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
std
::
vector
<
int32_t
>
ModifyStrategyIfSqueezeOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
CopyOutgoingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
);
void
GenerateEliminatedOperatorStrategyBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
}
// namespace parallel
}
// namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_GENERATE_STRATEGY_H_
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_graph.h
浏览文件 @
8f04adf1
...
...
@@ -46,7 +46,8 @@ enum OperatorType {
kRecMul
,
kRecDiv
,
kRecSqueeze
,
kRecCast
kRecCast
,
kRecReduce
};
enum
InfoType
{
kApplication
,
kConstant
};
...
...
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.cc
浏览文件 @
8f04adf1
...
...
@@ -20,6 +20,7 @@
#include <memory>
#include <string>
#include <vector>
#include <set>
#include "ir/value.h"
#include "parallel/auto_parallel/rec_core/rec_graph.h"
...
...
@@ -161,5 +162,71 @@ size_t GetIndexInInputTensorNames(const std::vector<std::vector<std::string>> &i
MS_LOG
(
INFO
)
<<
"Get index failed, using SIZE_MAX insted"
;
return
SIZE_MAX
;
}
void
Eliminate_Aux
(
const
size_t
node_index
,
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
)
{
std
::
vector
<
size_t
>
eli
;
eli
.
push_back
(
node_index
);
for
(
size_t
i
=
0
;
i
<
(
size_t
)
graph
->
nodes
[
node_index
].
node_out
.
size
();
i
++
)
{
eli
.
push_back
(
graph
->
nodes
[
node_index
].
node_out
[
i
]);
}
eli_list
->
push_back
(
eli
);
for
(
auto
input_index
:
graph
->
nodes
[
node_index
].
node_in
)
{
auto
it
=
find
(
graph
->
nodes
[
input_index
].
node_out
.
begin
(),
graph
->
nodes
[
input_index
].
node_out
.
end
(),
node_index
);
if
(
it
!=
graph
->
nodes
[
input_index
].
node_out
.
end
())
{
graph
->
nodes
[
input_index
].
node_out
.
erase
(
it
);
for
(
auto
output_index
:
graph
->
nodes
[
node_index
].
node_out
)
{
graph
->
nodes
[
input_index
].
node_out
.
push_back
(
output_index
);
}
}
}
for
(
auto
output_index
:
graph
->
nodes
[
node_index
].
node_out
)
{
auto
it
=
find
(
graph
->
nodes
[
output_index
].
node_in
.
begin
(),
graph
->
nodes
[
output_index
].
node_in
.
end
(),
node_index
);
if
(
it
!=
graph
->
nodes
[
output_index
].
node_in
.
end
())
{
graph
->
nodes
[
output_index
].
node_in
.
erase
(
it
);
for
(
auto
input_index
:
graph
->
nodes
[
node_index
].
node_in
)
{
graph
->
nodes
[
output_index
].
node_in
.
push_back
(
input_index
);
}
}
}
}
std
::
shared_ptr
<
Graph
>
EliminateGraph
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
)
{
MS_EXCEPTION_IF_NULL
(
graph
);
const
std
::
set
<
OperatorType
>
type_list
=
{
OperatorType
::
kRecOneHot
,
OperatorType
::
kRecReLU
,
OperatorType
::
kRecLog
,
OperatorType
::
kRecExp
,
OperatorType
::
kRecAdd
,
OperatorType
::
kRecElmWiseOp
,
OperatorType
::
kRecBiasAdd
,
OperatorType
::
kRecSub
,
OperatorType
::
kRecMul
,
OperatorType
::
kRecDiv
,
OperatorType
::
kRecSqueeze
,
OperatorType
::
kRecReduce
,
OperatorType
::
kRecCast
};
for
(
size_t
node_index
=
0
;
node_index
<
(
size_t
)
graph
->
nodes
.
size
();
node_index
++
)
{
auto
type
=
graph
->
nodes
[
node_index
].
apply
.
op_type
;
if
(
type_list
.
find
(
type
)
!=
type_list
.
end
())
{
Eliminate_Aux
(
node_index
,
graph
,
eli_list
);
}
}
index_list
->
reserve
(
graph
->
nodes
.
size
());
for
(
size_t
i
=
0
;
i
<
(
size_t
)
graph
->
nodes
.
size
();
i
++
)
{
index_list
->
push_back
(
i
);
}
for
(
size_t
i
=
0
;
i
<
(
size_t
)
eli_list
->
size
();
i
++
)
{
if
(
eli_list
->
at
(
i
)[
0
]
>=
index_list
->
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Operators' elements out of range."
;
}
index_list
->
at
(
eli_list
->
at
(
i
)[
0
])
=
SIZE_MAX
;
for
(
size_t
j
=
eli_list
->
at
(
i
)[
0
]
+
1
;
j
<
(
size_t
)
index_list
->
size
();
j
++
)
{
index_list
->
at
(
j
)
--
;
}
}
std
::
shared_ptr
<
Graph
>
new_graph
(
new
Graph
);
for
(
size_t
i
=
0
;
i
<
(
size_t
)
graph
->
nodes
.
size
();
i
++
)
{
if
(
index_list
->
at
(
i
)
>
SIZE_MAX
/
2
)
{
continue
;
}
new_graph
->
nodes
.
push_back
(
graph
->
nodes
[
i
]);
}
return
new_graph
;
}
}
// namespace parallel
}
// namespace mindspore
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.h
浏览文件 @
8f04adf1
...
...
@@ -50,10 +50,10 @@ const std::map<std::string, OperatorType> DictOpType{
{
DIV
,
OperatorType
::
kRecElmWiseOp
},
{
SQUEEZE
,
OperatorType
::
kRecSqueeze
},
{
CAST
,
OperatorType
::
kRecCast
},
{
REDUCE_SUM
,
OperatorType
::
kRec
Cast
},
{
REDUCE_MAX
,
OperatorType
::
kRec
Cast
},
{
REDUCE_MIN
,
OperatorType
::
kRec
Cast
},
{
REDUCE_MEAN
,
OperatorType
::
kRec
Cast
}};
{
REDUCE_SUM
,
OperatorType
::
kRec
Reduce
},
{
REDUCE_MAX
,
OperatorType
::
kRec
Reduce
},
{
REDUCE_MIN
,
OperatorType
::
kRec
Reduce
},
{
REDUCE_MEAN
,
OperatorType
::
kRec
Reduce
}};
const
TensorParam
MakeTensor
(
int
n
,
int
c
,
int
h
,
int
w
);
...
...
@@ -72,6 +72,13 @@ void MakeEdge(const std::vector<std::vector<std::string>> &input_tensor_names, s
size_t
GetIndexInInputTensorNames
(
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
string
&
input_name
);
void
Eliminate_Aux
(
const
size_t
node_index
,
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
);
std
::
shared_ptr
<
Graph
>
EliminateGraph
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
);
}
// namespace parallel
}
// namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_PARSE_GRAPH_H_
mindspore/ccsrc/parallel/step_auto_parallel.cc
浏览文件 @
8f04adf1
...
...
@@ -1158,11 +1158,12 @@ Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const
for
(
auto
it
=
tuple_getitem_list
.
begin
();
it
!=
tuple_getitem_list
.
end
();)
{
input_tensor_names
=
RecInputTensorNames
(
it
++
,
input_tensor_names
);
}
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
ops_nodes_list
(
new
std
::
vector
<
size_t
>
);
std
::
shared_ptr
<
Graph
>
graph
=
ParseGraph
(
ops
,
input_tensor_names
);
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
(
new
std
::
vector
<
std
::
vector
<
size_t
>>
);
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
(
new
std
::
vector
<
size_t
>
);
graph
=
EliminateGraph
(
graph
,
eli_list
,
index_list
);
size_t
num_device
=
g_device_manager
->
DeviceNum
();
double
device_memory
=
entire_costgraph
->
GetDeviceMemory
();
if
(
PartitionForAllDevices
(
num_device
,
device_memory
,
graph
)
==
SUCCESS
)
{
...
...
@@ -1172,7 +1173,7 @@ Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const
return
FAILED
;
}
GenerateStrategy
(
graph
,
ops
);
GenerateStrategy
(
graph
,
ops
,
eli_list
,
input_tensor_names
,
index_list
);
if
(
entire_costgraph
->
InitSelectedStrategy
()
==
SUCCESS
)
{
MS_LOG
(
INFO
)
<<
"Init selected strategy succeeded."
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录