提交 8e20d4d8 编写于 作者: H hongxing

fix l2normalize/prelu/softmax cost

上级 948ea950
......@@ -703,5 +703,48 @@ StrategyRec CostBatchParallel::ChoseStr(const std::vector<double> &cost_op, Stra
}
return str;
}
// Chose strategy for CostSoftmaxCrossEntropyWithLogits
StrategyRec CostSoftmaxCrossEntropyWithLogits::ChoseStr(const std::vector<double> &cost_op, StrategyRec str) {
uint64_t min_position = min_element(cost_op.begin(), cost_op.end()) - cost_op.begin();
if (cost_op[min_position] > (DOUBLE_MAX - 0.1)) {
return str;
}
switch (min_position) {
case 0:
str.inputTensor[0].str_n /= 2.0;
str.inputTensor[1].str_n /= 2.0;
str.cut_counter += 1;
str.cost = str.cost + cost_in_;
break;
case 1:
str.inputTensor[0].str_c /= 2.0;
str.inputTensor[1].str_c /= 2.0;
str.cut_counter += 1;
str.cost = str.cost + cost_in_;
break;
case 2:
str.inputTensor[0].str_h /= 2.0;
str.inputTensor[1].str_h /= 2.0;
str.outputTensor.str_w /= 2.0;
str.cut_counter += 1;
str.cost = str.cost + cost_in_;
break;
case 3:
str.inputTensor[0].str_w /= 2.0;
str.inputTensor[1].str_w /= 2.0;
str.cut_counter += 1;
str.cost = str.cost + cost_in_;
break;
default:
MS_LOG(EXCEPTION) << "Failure: CostSoftmax failed.";
}
return str;
}
} // namespace parallel
} // namespace mindspore
......@@ -222,6 +222,12 @@ class CostBatchParallel {
class CostBatchNorm : public CostBatchParallel {};
class CostOneHot : public CostBatchParallel {};
class CostPRelu : public CostBatchParallel {};
class CostSoftmax : public CostBatchParallel {};
class CostSoftmaxCrossEntropyWithLogits : public CostBatchParallel {
StrategyRec ChoseStr(const std::vector<double> &cost_op, StrategyRec str);
};
} // namespace parallel
} // namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_COST_H_
......@@ -127,14 +127,6 @@ std::vector<std::vector<int32_t>> PrepareMatMul(const std::shared_ptr<Graph> &gr
return strategies;
}
std::vector<std::vector<int32_t>> PreparePReLU(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops) {
std::vector<std::vector<int32_t>> strategies = MakeDataParallelStrategy(graph, ops, iter_graph, iter_ops);
strategies[1][0] = 1;
return strategies;
}
std::vector<std::vector<int32_t>> PrepareBiasAdd(const std::shared_ptr<std::vector<int32_t>> &s) {
std::vector<std::vector<int32_t>> strategies;
strategies.push_back(*s);
......@@ -164,6 +156,32 @@ std::vector<std::vector<int32_t>> PrepareGatherV2(const std::shared_ptr<std::vec
return strategies;
}
std::vector<std::vector<int32_t>> PrepareL2Normalize(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s) {
int32_t axis = 0;
auto iter = ops[iter_ops]->attrs().find(AXIS);
if (iter != ops[iter_ops]->attrs().end()) {
MS_EXCEPTION_IF_NULL(iter->second);
if (iter->second->isa<Int32Imm>()) {
axis = iter->second->cast<Int32ImmPtr>()->value();
} else {
MS_LOG(EXCEPTION) << ops[iter_ops]->name() << " : The value of axis is not int.";
}
}
int32_t axis_index = axis;
if (axis < 0) {
size_t input_dim = ops[iter_ops]->inputs_tensor_info()[0].shape().size();
axis_index = static_cast<int32_t>(input_dim) + axis;
}
s[IntToSize(axis_index)] = 1;
std::vector<std::vector<int32_t>> strategies;
strategies.push_back(s);
return strategies;
}
std::vector<std::vector<int32_t>> MakeRecSearchStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops) {
......@@ -279,13 +297,8 @@ std::vector<std::vector<int32_t>> PrepareStrategy(const std::shared_ptr<Graph> &
if (type == MATMUL) {
return PrepareMatMul(graph, ops, iter_graph, iter_ops);
} else if (type == PRELU) {
return PreparePReLU(graph, ops, iter_graph, iter_ops);
} else if (type == ONEHOT) {
return PrepareOneHot(graph, ops, iter_graph, iter_ops);
} else if (type == SOFTMAX || type == LOG_SOFTMAX || type == SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS ||
type == SOFTMAX_CROSS_ENTROPY_WITH_LOGITS) {
return MakeDataParallelStrategy(graph, ops, iter_graph, iter_ops);
} else {
return MakeRecSearchStrategy(graph, ops, iter_graph, iter_ops);
}
......@@ -510,6 +523,9 @@ std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vect
if (ops[iter_ops]->type() == GATHERV2) {
return PrepareGatherV2(s_ptr);
}
if (ops[iter_ops]->type() == L2_NORMALIZE) {
return PrepareL2Normalize(ops, iter_ops, basic_stra);
}
for (size_t iter_op_inputs = 0; iter_op_inputs < (size_t)ops[iter_ops]->inputs_tensor_info().size();
iter_op_inputs++) {
......
......@@ -34,14 +34,13 @@ void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::share
std::vector<std::vector<int32_t>> PrepareMatMul(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
std::vector<std::vector<int32_t>> PreparePReLU(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
std::vector<std::vector<int32_t>> PrepareBiasAdd(const std::shared_ptr<std::vector<int32_t>> &s);
std::vector<std::vector<int32_t>> PrepareOneHot(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
std::vector<std::vector<int32_t>> PrepareGatherV2(const std::shared_ptr<std::vector<int32_t>> &s);
std::vector<std::vector<int32_t>> PrepareL2Normalize(const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_ops, std::vector<int32_t> s);
std::vector<std::vector<int32_t>> MakeRecSearchStrategy(const std::shared_ptr<Graph> &graph,
const std::vector<std::shared_ptr<OperatorInfo>> &ops,
const size_t iter_graph, const size_t iter_ops);
......
......@@ -38,6 +38,7 @@ enum OperatorType {
kRecBiasAdd,
kRecSoftmax,
kRecSparseSoftmaxCrossEntropyWithLogits,
kRecSoftmaxCrossEntropyWithLogits,
kRecOneHot,
kRecLog,
kRecExp,
......
......@@ -250,12 +250,22 @@ std::shared_ptr<Graph> EliminateGraph(const std::shared_ptr<Graph> graph,
new_graph->nodes.push_back(graph->nodes[i]);
auto *node_in = &new_graph->nodes[index_list->at(i)].node_in;
for (size_t j = 0; j < node_in->size(); j++) {
node_in->at(j) = index_list->at(node_in->at(j));
for (size_t j = node_in->size(); j > 0; j--) {
bool IsEliminated = (index_list->at(node_in->at(j - 1)) == SIZE_MAX);
if (IsEliminated) {
node_in->erase(node_in->begin() + j - 1);
} else {
node_in->at(j - 1) = index_list->at(node_in->at(j - 1));
}
}
auto *node_out = &new_graph->nodes[index_list->at(i)].node_out;
for (size_t j = 0; j < node_out->size(); j++) {
node_out->at(j) = index_list->at(node_out->at(j));
for (size_t j = node_out->size(); j > 0; j--) {
bool IsEliminated = (index_list->at(node_out->at(j - 1)) == SIZE_MAX);
if (IsEliminated) {
node_out->erase(node_out->begin() + j - 1);
} else {
node_out->at(j - 1) = index_list->at(node_out->at(j - 1));
}
}
}
return new_graph;
......
......@@ -67,7 +67,7 @@ const std::map<std::string, OperatorType> DictOpType{
{REAL_DIV, OperatorType::kRecElmWiseOp},
{SOFTMAX, OperatorType::kRecSoftmax},
{LOG_SOFTMAX, OperatorType::kRecSoftmax},
{SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, OperatorType::kRecSoftmax},
{SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, OperatorType::kRecSoftmaxCrossEntropyWithLogits},
{SQRT, OperatorType::kRecElmWiseOp},
{NEG, OperatorType::kRecElmWiseOp},
{POW, OperatorType::kRecElmWiseOp},
......
......@@ -76,15 +76,16 @@ double GetWeights(const Graph::NodeType &node) {
auto cost_ptr = std::make_shared<CostCommon>();
return cost_ptr->GetMinCostIn();
} else if (op.op_type == OperatorType::kRecBatchNorm || op.op_type == OperatorType::kRecOneHot) {
} else if (op.op_type == OperatorType::kRecBatchNorm || op.op_type == OperatorType::kRecOneHot ||
op.op_type == OperatorType::kRecPReLU || op.op_type == OperatorType::kRecSoftmax ||
op.op_type == OperatorType::kRecSparseSoftmaxCrossEntropyWithLogits ||
op.op_type == OperatorType::kRecSoftmaxCrossEntropyWithLogits) {
// For BatchParallel op
auto cost_ptr = std::make_shared<CostBatchParallel>();
return cost_ptr->GetMaxCostIn();
} else if (op.op_type == OperatorType::kRecUnkownType || op.op_type == OperatorType::kRecPReLU ||
op.op_type == OperatorType::kRecSoftmax ||
op.op_type == OperatorType::kRecSparseSoftmaxCrossEntropyWithLogits) {
// For unprocessed type
} else if (op.op_type == OperatorType::kRecUnkownType) {
// For Unkown type
return 0.0;
} else {
MS_LOG(EXCEPTION) << "Failure: GetOperatorWeight failed.";
......@@ -170,14 +171,18 @@ StrategyRec PartitionNode(const Graph::NodeType &node,
auto cost_ptr = std::make_shared<CostCommon>();
return cost_ptr->GetOptimalStr(node, node_name_to_strategy, *graph);
} else if (node.apply.op_type == OperatorType::kRecBatchNorm || node.apply.op_type == OperatorType::kRecOneHot) {
} else if (node.apply.op_type == OperatorType::kRecBatchNorm || node.apply.op_type == OperatorType::kRecOneHot ||
node.apply.op_type == OperatorType::kRecPReLU || node.apply.op_type == kRecSoftmax ||
node.apply.op_type == OperatorType::kRecSparseSoftmaxCrossEntropyWithLogits) {
// For BatchParallel type
auto cost_ptr = std::make_shared<CostBatchParallel>();
return cost_ptr->GetOptimalStr(node);
} else if (node.apply.op_type == OperatorType::kRecUnkownType || node.apply.op_type == OperatorType::kRecPReLU ||
node.apply.op_type == OperatorType::kRecSoftmax ||
node.apply.op_type == OperatorType::kRecSparseSoftmaxCrossEntropyWithLogits) {
// For unprocessed type
} else if (node.apply.op_type == OperatorType::kRecSoftmaxCrossEntropyWithLogits) {
// For SoftmaxCrossEntropyWithLogits type
auto cost_ptr = std::make_shared<CostSoftmaxCrossEntropyWithLogits>();
return cost_ptr->GetOptimalStr(node);
} else if (node.apply.op_type == OperatorType::kRecUnkownType) {
// For Unkown type
StrategyRec default_strategy;
return default_strategy;
} else {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册