提交 8c6dae88 编写于 作者: Z Zirui Wu

update docstring for compose/randomAppply/randomChoice to stay consistent with py_transforms

address review cmts

address review cmts
上级 b091f74c
...@@ -240,42 +240,47 @@ class Compose(cde.ComposeOp): ...@@ -240,42 +240,47 @@ class Compose(cde.ComposeOp):
Args: Args:
transforms (list): List of transformations to be applied. transforms (list): List of transformations to be applied.
Example:
Examples:
>>> compose = Compose([vision.Decode(), vision.RandomCrop()]) >>> compose = Compose([vision.Decode(), vision.RandomCrop()])
>>> dataset = ds.map(operations=compose) >>> dataset = ds.map(operations=compose)
""" """
@check_random_transform_ops @check_random_transform_ops
def __init__(self, op_list): def __init__(self, transforms):
super().__init__(op_list) super().__init__(transforms)
class RandomApply(cde.RandomApplyOp): class RandomApply(cde.RandomApplyOp):
""" """
Randomly performs a series of transforms with a given probability. Randomly performs a series of transforms with a given probability.
Args: Args:
transforms (list): List of transformations to be applied. transforms (list): List of transformations to be applied.
prob (float, optional): The probability to apply the transformation list (default=0.5) prob (float, optional): The probability to apply the transformation list (default=0.5)
Example:
Examples:
>>> rand_apply = RandomApply([vision.RandomCrop()]) >>> rand_apply = RandomApply([vision.RandomCrop()])
>>> dataset = ds.map(operations=rand_apply) >>> dataset = ds.map(operations=rand_apply)
""" """
@check_random_transform_ops @check_random_transform_ops
def __init__(self, op_list, prob=0.5): def __init__(self, transforms, prob=0.5):
super().__init__(prob, op_list) super().__init__(prob, transforms)
class RandomChoice(cde.RandomChoiceOp): class RandomChoice(cde.RandomChoiceOp):
""" """
Randomly selects one transform from a list of transforms to perform operation. Randomly selects one transform from a list of transforms to perform operation.
Args: Args:
transforms (list): List of transformations to be chosen from to apply. transforms (list): List of transformations to be chosen from to apply.
Example:
Examples:
>>> rand_choice = RandomChoice([vision.CenterCrop(), vision.RandomCrop()]) >>> rand_choice = RandomChoice([vision.CenterCrop(), vision.RandomCrop()])
>>> dataset = ds.map(operations=rand_choice) >>> dataset = ds.map(operations=rand_choice)
""" """
@check_random_transform_ops @check_random_transform_ops
def __init__(self, op_list): def __init__(self, transforms):
super().__init__(op_list) super().__init__(transforms)
...@@ -738,6 +738,21 @@ class UniformAugment(cde.UniformAugOp): ...@@ -738,6 +738,21 @@ class UniformAugment(cde.UniformAugOp):
class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp): class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp):
"""
Choose a random sub-policy from a list to be applied on the input image. A sub-policy is a list of tuples
(op, prob), where op is a TensorOp operation and prob is the probability that this op will be applied. Once
a sub-policy is selected, each op within the subpolicy with be applied in sequence according to its probability
Args:
policy (list(list(tuple(TensorOp,float))): List of sub-policies to choose from.
Examples:
>>> policy = [[(c_vision.RandomRotation((45, 45))), (c_transforms.RandomVerticalFlip()),
>>> (c_transforms.RandomColorAdjust())],
>>> [(c_vision.RandomRotation((90, 90))), (c_transforms.RandomColorAdjust())]]
>>> ds_policy = ds.map(input_columns=["image"], operations=visions.RandomSelectSubpolicy(policy))
"""
@check_random_select_subpolicy_op @check_random_select_subpolicy_op
def __init__(self, policy): def __init__(self, policy):
super().__init__(policy) super().__init__(policy)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册